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� 18 letures: feel free to ask questions

� Buy the textbook: Hayt, Kemmerly & Durbin �Engineering Ciruit

Analysis� ISBN: 0071217066 (¿44) or Irwin, Nelms & Patnaik

�Engineering Ciruit Analysis� ISBN: 1118960637 (¿37)

� Weekly study group: Problem sheets - KEEP UP TO DATE

� Fortnightly tutorial: tutorial problems

� Leture slides (inluding animations) and problem sheets + answers

available via Blakboard or from my website:

http://www.ee.i.a.uk/hp/sta�/dmb/ourses/ts1/ts1.htm

� Quite dense: you should understand every word

� Email me with any errors or onfusions in slides or problems/answers

� Christmas Test in January

� Exam in June (sample papers + solutions available via Blakboard)
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� A iruit onsists of eletrial or eletroni omponents

interonneted with metal wires

� Every eletrial or eletroni devie is a iruit

Breadboard Printed Integrated

� The funtion of the iruit is determined by whih omponents are

used and how they are interonneted: the physial positioning of the

omponents usually has hardly any e�et.
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A iruit diagram shows the way in whih the omponents are onneted

• Eah omponent has a

speial symbol

• The interonneting wires are

shown as lines

A node in a iruit is all the points that are onneted together via the

interonneting wires. One of the four nodes in the diagram is oloured red.

Assumption: Interonneting wires have zero resistane so everywhere along

a node has the same voltage.

Junction Crossover Bad Better

Indiate three meeting wires

with a � and rossovers

without one.

Avoid having four meeting wires in ase the � disappears; stagger the wires

instead.
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Charge is an eletrial property possessed by some atomi partiles

Charge is measured in Colombs (abbreviated C)

An eletron has a harge −1.6× 10−19C, a proton +1.6× 10−19C

Unlike harges attrat, like harges repel: the fore is fantastially huge

Two people 384, 000 km apart

Eah with 1% extra eletrons

Fore = 2× 108N
= 20, 000 tonne− force
= 360, 000× their weight

Consequene: Charge never aumulates in a ondutor: everywhere in a

onduting path stays eletrially neutral at all times.
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Current is the �ow of harged partiles past a measurement boundary

Using an ammeter, we measure urrent in Ampères (usually abbreviated to

Amps or A): 1 A = 1 C/s

Analogy: the �ow of water in a pipe or river is measured in litres per seond

The arrow in a iruit diagram

indiates the diretion we hoose

to measure the urrent.

I = +1 A ⇒ 1 C of +ve harge

passes eah point every seond in

the diretion of the arrow (or else

1 C of �ve harge in the opposite

diretion)

I = −1 A ⇒ 1 C of +ve harge in the diretion opposite to the arrow

• Average eletron veloity is surprisingly slow (e.g. 1 mm/s) but (like a

water pipe) the signal travels muh faster.

• In metals the harge arriers (eletrons) are atually �ve: in this ourse

you should ignore this always.
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When a ball falls from a

shelf, it loses potential

energy of mgh or,

equivalently, gh per kg.

h

The potential energy per kg of any point on a mountain range is equal to

gh where h is measured relative to an equipotential referene surfae (e.g.

the surfae of a lake).

The potential energy di�erene between any two points is the energy

needed to move 1 kg from one point to the other.

The potential energy di�erene does not depend on the route taken

between the points.

The potential enegy di�erene does not depend on your hoie of referene

surfae (e.g. lake surfae or sea level).
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The eletrial potential di�erene (or voltage di�erene) between any two

nodes in a iruit is the energy per oulomb needed to move a small +ve

harge from one node to the the other.

We usually pik one of the nodes as a referene and de�ne the voltage at a

node to be the voltage di�erene between that node and the referene.

The four nodes are labelled

A, B, C, G.

We have hosen G as the referene

node; indiated by the �ground�

symbol.

The potential di�erene between A and the ground referene, G, is written

VA and is also alled �the voltage at A�.

The potential di�erene between A and B is written as VAB and shown as

an arrow pointing towards A. This is the energy per oulomb in going from

B to A and satis�es VAB = VA − VB. (Di�erent from vetors)

Easy algebra shows that VAB = −VBA and that VAC = VAB + VBC .
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A resistor is made from a

thin strip of metal �lm

deposited onto an

insulating erami base.

The harateristi of a

omponent is a graph showing

how the voltage and urrent are

related. We always hoose the

urrent and voltage arrows in

opposite diretions: this is the

passive sign onvention.

For a resistor, I ∝ V and

V

I
= R, its resistane whih is measured in Ohms

(Ω). This is Ohm's Law. Sometimes it is more onvenient to work in terms

of the ondutane, G = 1

R
= I

V

measured in Siemens (S).

The graph shows the harateristi of a 12.5 Ω resistor. The gradient of the

graph equals the ondutane G = 80 mS. Alternative zigzag symbol.
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To measure the voltage in a physial iruit, you use a voltmeter (V

in the �gure) whih has two test leads onneted to it usually oloured

red (marked +) and blak (marked �) respetively. The reading on

the voltmeter shows the voltage at the red lead relative to that at the

blak lead (or equivalently the red voltage minus the blak voltage). To

measure the voltage V in the �gure, you would onnet the red lead to

the top end of the arrow (pointed end) and the blak lead to the bottom

(blunt end).

To measure urrent you use an ammeter (A in the �gure) whih also has two test leads oloured red

and blak respetively. The reading shows the urrent �owing through the ammeter into the red lead

and out of the blak lead. To measure the urrent I on the previous slide, you would need to break the

wire arrying the urrent and insert the ammeter as shown in the �gure.

With the onnetions shown in the �gure, the readings on V and A will always have the same sign:

either both positive or both negative and will satisfy Ohm's law: V = IR. However, if the onnetions

are reversed on either V or A, then the two readings will have opposite signs and V = −IR whih does

not satisfy Ohm's law.

So, if you want Ohm's law to be true you must be sure to onnet the measuring devies the right way

round aording to the passive sign onvention.
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Ohm's law relates the

voltage drop aross a

resistor to the urrent

�owing in it.

If the voltage, V , is �xed elsewhere in the iruit, it is onvenient to think

that V auses the urrent I to �ow.

If the urrent, I, is �xed elsewhere in the iruit, it is more onvenient to

think that V is aused by the urrent I �owing through the resistor.

Neither statement is �more true� than the other. It is perhaps truer to say

that I and V are onstrained to satisfy V = I ×R.
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Gravitational potential energy, mgh, lost by a falling objet is transformed

into kineti energy or heat.

Current in a resistor

always �ows from a

high voltage (more

positive) to a low

voltage (more

negative).

When urrent �ows through a resistor, the eletrial potential energy that is

lost is transformed into heat.

The power dissipated as heat in a resistor is equal to V I Watts (W). 1

Watt equals one Joule of energy per seond. Sine V and I always have

the same sign (see graph) the power dissipation is always positive.

Any omponent: P = V I gives the power absorbed by any omponent.

For a resistor only:

V

I
= R ⇒ P = V I = V

2

R
= I2R.
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Energy in an eletrial iruit is supplied by voltage and urrent soures

An ideal voltage soure

maintains the same value of

V for all urrents. Its

harateristi is a vertial

line with in�nite gradient.

There are two ommon

symbols.

V

I

1–1 2

0.1

0.2

–0.1

–0.2

I

V 1.5V

An ideal urrent soure

maintains the same value of

I for all voltages. Its

harateristi is a horizontal

line with zero gradient.

Notie that I is negative.

V

I

1–1 2

0.1

0.2

–0.1

–0.2

I

V
180mA

If the soure is supplying eletrial energy to a iruit, then V I < 0.

However, when a reharheable battery is harging, V I > 0.
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In any iruit some iruit elements will be supplying energy and others

absorbing it. At all times, the power absorbed by all the elements will sum

to zero.

The iruit has two nodes whose

potential di�erene is 10 V.

Ohm's Law:

I = V

R
= 0.01 A

Power absorbed by resistor:

PR = V1 × I1 = (+10)× (+0.01) = +0.1W

For Ohm's law or power dissipation, V and I an be measured either

way round but must be in opposite diretions (passive sign onvention).

PR = V2 × I2 = (−10)× (−0.01) = +0.1W

Power absorbed by voltage soure:

PS = VS × IS = (+10)× (−0.01) = −0.1W

Total power absorbed by iruit elements: PS + PR = 0
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Quantity Letter Unit Symbol

Charge Q Coulomb C

Condutane G Siemens S

Current I Amp A

Energy W Joule J

Potential V Volt V

Power P Watt W

Resistane R Ohm Ω

Value Pre�x Symbol

10−3

milli m
10−6

miro µ
10−9

nano n
10−12

pio p
10−15

femto f

Value Pre�x Symbol

103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
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� Ciruits and Nodes

� Charge, Current and Voltage

� Resistors, Voltage Soure and Current Soures

� Power Dissipation and Power Conservation

For further details see Hayt Ch 2 or Irwin Ch 1.
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The �ve nodes are labelled

A, B, C, D, E where E is the

referene node.

Eah omponent that links a pair

of nodes is alled a branh of the

network.

Kirho�'s Voltage Law (KVL) is a onsequene of the fat that the work

done in moving a harge from one node to another does not depend on the

route you take; in partiular the work done in going from one node bak to

the same node by any route is zero.

KVL: the sum of the voltage hanges around any losed loop is zero.

Example: VDE + VBD + VAB + VEA = 0

Equivalent formulation:

VXY = VXE − VY E = VX − VY for any nodes X and Y .
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Wherever harges are free to move around, they will move to ensure harge

neutrality everywhere at all times.

A onsequene is Kirho�'s Current Law (KCL) whih says that the urrent

going into any losed region of a iruit must equal the urrent oming out.

KCL: The urrents �owing out of any losed region of a iruit sum to zero.

Green: I1 = I7

Blue: −I1 + I2 + I5 = 0

Gray: −I2 + I4 − I6 + I7 = 0



KCL Example

2: Resistor Ciruits

Kirho�'s Voltage

Law

Kirho�'s Current

Law

⊲ KCL Example

Series and Parallel

Dividers

Equivalent

Resistane: Series

Equivalent

Resistane: Parallel

Equivalent

Resistane: Parallel

Formulae

Simplifying Resistor

Networks

Non-ideal Voltage

Soure

Summary

E1.1 Analysis of Ciruits (2017-10110) Resistor Ciruits: 2 � 4 / 13

The urrents and voltages in any linear iruit an be determined by using

KCL, KVL and Ohm's law.

Sometimes KCL allows you to determine urrents very easily without having

to solve any simultaneous equations:

How do we alulate I ?

KCL: −1 + I + 3 = 0
=⇒ I = −2A

Note that here I ends up negative whih means we hose the wrong arrow

diretion to label the iruit. This does not matter. You an hoose the

diretions arbitrarily and let the algebra take are of reality.
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Series: Components that are onneted in a hain so that the same urrent

�ows through eah one are said to be in series.

R1, R2, R3 are in series and the same

urrent always �ows through eah.

Within the hain, eah internal node

onnets to only two branhes.

R3 and R4 are not in series and do not

neessarily have the same urrent.

Parallel: Components that are onneted to the same pair of nodes are said

to be in parallel .

R1, R2, R3 are in parallel and the same

voltage is aross eah resistor (even

though R3 is not lose to the others).

R4 and R5 are also in parallel.
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VX = V1 + V2 + V3

= IR1 + IR2 + IR3

= I(R1 +R2 +R3)

V1

VX
= IR1

I(R1+R2+R3)

= R1

R1+R2+R3

= R1

RT

where RT = R1 +R2 +R3 is the

total resistane of the hain.

VX is divided into V1 : V2 : V3 in the proportions R1 : R2 : R3.

Approximate Voltage Divider:

If IY = 0, then VY = RA

RA+RB
VX .

If IY ≪ I, then VY ≈ RA

RA+RB
VX .
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Parallel resistors all share the same V .

I1 = V
R1

= V G1 where G1 = 1
R1

is the ondutane of R1.

IX = I1 + I2 + I3

= V G1 + V G2 + V G3

= V (G1 +G2 +G3)

I1
IX

= V G1

V (G1+G2+G3)
= G1

G1+G2+G3

= G1

GP

where GP = G1 +G2 +G3 is the total ondutane of the resistors.

IX is divided into I1 : I2 : I3 in the proportions G1 : G2 : G3.

Speial ase for only two resistors:

I1 : I2 = G1 : G2 = R2 : R1 ⇒ I1 = R2

R1+R2

IX .
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We know that V = V1 + V2 + V3 = I(R1 +R2 +R3) = IRT

So we an replae the three resistors

by a single equivalent resistor of

value RT without a�eting the

relationship between V and I.

Replaing series resistors by their

equivalent resistor will not a�et any

of the voltages or urrents in the rest

of the iruit.

However the individual voltages V1,

V2 and V3 are no longer aessible.
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Similarly we known that I = I1 + I2 + I3 = V (G1 +G2 +G3) = V GP .

So V = IRP where RP = 1
GP

= 1
G1+G2+G3

= 1
1/R1+1/R2+1/R3

We an use a single

equivalent resistor of

resistane RP without

a�eting the

relationship between

V and I.

Replaing parallel resistors by

their equivalent resistor will not

a�et any of the voltages or

urrents in the rest of the iruit.

R4and R5 are also in parallel.

Muh simpler - although none of the original urrents I1, · · · , I5 are now

aessible. Current IS and the three node voltages are idential.
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For parallel resistors GP = G1 +G2 +G3

or equivalently RP = R1||R2||R3 = 1
1/R1+1/R2+1/R3

.

These formulae work for any number of resistors.

� For the speial ase of two parallel resistors

RP = 1
1/R1+1/R2

= R1R2

R1+R2

(�produt over sum�)

� If one resistor is a multiple of the other

Suppose R2 = kR1, then

RP = R1R2

R1+R2

=
kR2

1

(k+1)R1

= k
k+1R1 = (1− 1

k+1 )R1

Example: 1 kΩ || 99 kΩ = 99
100 kΩ =

(

1− 1
100

)

kΩ

Important: The equivalent resistane of parallel resistors is always less than

any of them.
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Many resistor iruits an be

simpli�ed by alternately ombining

series and parallel resistors.

Series: 2 k + 1 k = 3 k

Parallel: 3 k || 7 k = 2.1 k

Parallel: 2 k || 3 k = 1.2 k

Series: 2.1 k + 1.2 k = 3.3 k

Sadly this method does not always

work: there are no series or parallel

resistors here.



Non-ideal Voltage Soure

2: Resistor Ciruits

Kirho�'s Voltage

Law

Kirho�'s Current

Law

KCL Example

Series and Parallel

Dividers

Equivalent

Resistane: Series

Equivalent

Resistane: Parallel

Equivalent

Resistane: Parallel

Formulae

Simplifying Resistor

Networks

⊲

Non-ideal Voltage

Soure

Summary

E1.1 Analysis of Ciruits (2017-10110) Resistor Ciruits: 2 � 12 / 13

An ideal battery has a harateristi that is

vertial: battery voltage does not vary with

urrent.

Normally a battery is supplying energy so V

and I have opposite signs, so I ≤ 0.

An real battery has a harateristi that has

a slight positive slope: battery voltage

dereases as the (negative) urrent inreases.

Model this by inluding a small resistor in

series. V = VB + IRB .

The equivalent resistane for a battery

inreases at low temperatures.
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� Kiho�'s Voltage and Current Laws

� Series and Parallel omponents

� Voltage and Current Dividers

� Simplifying Resistor Networks

� Battery Internal Resistane

For further details see Hayt Ch 3 or Irwin Ch 2.
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The aim of nodal analysis is to determine the voltage at eah node relative

to the referene node (or ground). One you have done this you an easily

work out anything else you need.

There are two ways to do this:

(1) Nodal Analysis - systemati; always works

(2) Ciruit Manipulation - ad ho; but an be less work and learer

Reminders:

A node is all the points in a iruit

that are diretly interonneted.

We assume the interonnetions

have zero resistane so all points

within a node have the same

voltage. Five nodes: A, · · · , E.

Ohm's Law: VBD = IR5

KVL: VBD = VB − VD

KCL: Total urrent exiting any losed region is zero.
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To �nd the voltage at eah node, the �rst

step is to label eah node with its voltage

as follows

(1) Pik any node as the voltage referene. Label its voltage as 0 V.

(2) If any �xed voltage soures are onneted to a labelled node, label their

other ends by adding the value of the soure onto the voltage of the

labelled end.

(3) Pik an unlabelled node and label it with X, Y, . . ., then go bak to

step (2) until all nodes are labelled.
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The seond step is to write down a KCL equation for eah node labelled

with a variable by setting the total urrent �owing out of the node to zero.

For a iruit with N nodes and S voltage soures you will have N − S − 1

simultaneous equations to solve.

We only have one variable:

X−8
1 k + X−0

2 k + X−(−2)
3 k = 0 ⇒ (6X − 48) + 3X + (2X + 4) = 0

11X = 44 ⇒ X = 4

Numerator for a resistor is always of the form X − VN where VN is the

voltage on the other side of the resistor.
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Current soures ause no problems.

(1) Pik referene node.

(2) Label nodes: 8, X and Y .

(3) Write equations

X−8
1 + X

2 + X−Y

3 = 0

Y−X

3 + (−1) = 0

Ohm's law works OK if all resistors are in kΩ and all urrents in mA.

(4) Solve the equations: X = 6, Y = 9
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Floating voltage soures have neither end onneted to a known �xed

voltage. We have to hange how we form the KCL equations slightly.

(1) Pik referene node.

(2) Label nodes: 8, X and X + 2 sine it

is joined to X via a voltage soure.

(3) Write KCL equations but ount all the

nodes onneted via �oating voltage

soures as a single �super-node� giving one

equation

X−8
1 + X

2 + (X+2)−0
3 = 0

(4) Solve the equations: X = 4

Ohm's law always involves the di�erene between the voltages at either end

of a resistor. (Obvious but easily forgotten)
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A very useful sub-iruit that alulates the weighted average of any

number of voltages.

KCL equation for node X:

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Still works if V3 = 0.

Or using ondutanes:

(X − V1)G1 + (X − V2)G2 + (X − V3)G3 = 0

X(G1 +G2 +G3) = V1G1 + V2G2 + V3G3

X = V1G1+V2G2+V3G3

G1+G2+G3

=
∑

3

i=1
ViGi∑

3

i=1
Gi

Voltage X is the average of V1, V2, V3 weighted by the ondutanes.
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A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a

value 6 in deimal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to ontrol the swithes whih determine whether Vi = 5V or

Vi = 0 V. Thus Vi = 5bi. Swithes shown for b = 6.
X =

1

2
V2+

1

4
V1+

1

8
V0

1

2
+ 1

4
+ 1

8

= 1
7 (4V2 + 2V1 + V0)

but Vi = 5× bi sine it onnets to

either 0V or 5V

= 5
7 (4b2 + 2b1 + b0) =

5
7b

G2 = 1
R2

= 1
2 mS, . . .

So we have made a iruit in whih X is proportional to a binary number b.
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A dependent voltage or urrent soure is one whose value is determined by

voltages or urrents elsewhere in the iruit. These are most ommonly

used when modelling the behaviour of transistors or op-amps. Eah

dependent soure has a de�ning equation.

In this iruit: IS = 0.2W mA where W is in volts.

(1) Pik referene node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent

soure, IS , in terms of node voltages:

IS = 0.2 (U −X)

(4) Write KCL equations:

X−U

10 + X

10 + X−Y

20 = 0 Y−X

20 + IS + Y

15 = 0

(5) Solve all three equations to �nd X, Y and IS in terms of U :

X = 0.1U, Y = −1.5U, IS = 0.18U

Note that the value of U is assumed to be known.
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The value of the highlighted dependent voltage soure is VS = 10J Volts

where J is the indiated urrent in mA.

(1) Pik referene node.

(2) Label nodes: 0, 5, X, X + 3 and

X + VS .

(3) Write equation for the dependent

soure, VS , in terms of node voltages:

VS = 10J = 10× X+VS−5
40 ⇒ 3VS = X − 5

(4) Write KCL equations: all nodes onneted by �oating voltage soures

and all omponents onneting these nodes are in the same �super-node�

X+VS−5
40 + X

5 + X+3
5 = 0

(5) Solve the two equations: X = −1 and VS = −2
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(1) Pik any node as the voltage referene. Label its voltage as 0 V. Label

any dependent soures with VS , IS , . . ..

(2) If any voltage soures are onneted to a labelled node, label their other

ends by adding the value of the soure onto the voltage of the labelled end.

Repeat as many times as possible.

(3) Pik an unlabelled node and label it with X, Y, . . ., then loop bak to

step (2) until all nodes are labelled.

(4) For eah dependent soure, write down an equation that expresses its

value in terms of other node voltages.

(5) Write down a KCL equation for eah �normal� node (i.e. one that is not

onneted to a �oating voltage soure).

(6) Write down a KCL equation for eah �super-node�. A super-node

onsists of a set of nodes that are joined by �oating voltage soures and

inludes any other omponents joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.



Summary

3: Nodal Analysis

Aim of Nodal Analysis

Nodal Analysis Stage

1: Label Nodes

Nodal Analysis Stage

2: KCL Equations

Current Soures

Floating Voltage

Soures

Weighted Average

Ciruit

Digital-to-Analog

Converter

Dependent Soures

Dependent Voltage

Soures

Universal Nodal

Analysis Algorithm

⊲ Summary

E1.1 Analysis of Ciruits (2017-10216) Nodal Analysis: 3 � 12 / 12

• Nodal Analysis

◦ Simple Ciruits (no �oating or dependent voltage soures)

◦ Floating Voltage Soures

⊲ use supernodes: all the nodes onneted by �oating voltage

soures (independent or dependent)

◦ Dependent Voltage and Current Soures

⊲ Label eah soure with a variable

⊲ Write extra equations expressing the soure values in terms of

node voltages

⊲ Write down the KCL equations as before

• Mesh Analysis (in most textbooks)

◦ Alternative to nodal analysis but doesn't work for all iruits

◦ No signi�ant bene�ts ⇒ ignore it

For further details see Hayt Ch 4 or Irwin Ch 3.
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Suppose we use variables instead of �xed values for all of the independent

voltage and urrent soures. We an then use nodal analysis to �nd all

node voltages in terms of the soure values.

(1) Label all the nodes

(2) KCL equations

X−U1

2 + X

1 + X−Y

3 = 0
Y−X

3 + (−U2) = 0

(3) Solve for the node voltages

X = 1
3U1 +

2
3U2, Y = 1

3U1 +
11
3 U2

Steps (2) and (3) never involve multiplying two soure values together, so:

Linearity Theorem: For any iruit ontaining resistors and independent

voltage and urrent soures, every node voltage and branh urrent is a

linear funtion of the soure values and has the form

∑
aiUi where the Ui

are the soure values and the ai are suitably dimensioned onstants.

Also true for a iruit ontaining dependent soures whose values are

proportional to voltages or urrents elsewhere in the iruit.
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A zero-valued voltage soure has zero volts

between its terminals for any urrent. It is

equivalent to a short-iruit or piee of wire

or resistor of 0 Ω (or ∞ S).

A zero-valued urrent soure has no urrent

�owing between its terminals. It is equivalent

to an open-iruit or a broken wire or a

resistor of ∞ Ω (or 0 S).
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We an use nodal analysis to �nd X in terms of U , V and W .

KCL:

X−U

2 + X−V

6 + X

1 −W = 0

10X − 3U − V − 6W = 0

X = 0.3U + 0.1V + 0.6W

From the linearity theorem, we know anyway that X = aU + bV + cW so

all we need to do is �nd the values of a, b and c. We �nd eah oe�ient

in turn by setting all the other soures to zero:

We have XU = aU + b× 0 + c× 0 = aU .

Similarly, XV = bV and XW = cW ⇒ X = XU +XV +XW .
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Superposition:

Find the e�et of eah soure on its own

by setting all other soures to zero. Then

add up the results.

XU =
6

7

2+ 6

7

U = 6
20U = 0.3U

XV =
2

3

6+ 2

3

V = 2
20V = 0.1V

XW = 6
6+ 2

3

W × 2
3 = 12

20W = 0.6W

Adding them up: X = XU +XV +XW = 0.3U + 0.1V + 0.6W
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A dependent soure is one that is determined by the voltage and/or urrent

elsewhere in the iruit via a known equation. Here V , Y −X.

Step 1: Pretend all soures are independent

and use superposition to �nd expressions for

the node voltages:

X = 10
3 U1 + 2U2 +

1
6V

Y = 2U1 + 6U2 +
1
2V

Step 2: Express the dependent soure values in terms of node voltages:

V = Y −X

Step 3: Eliminate the dependent soure values from the node voltage

equations:

X = 10
3 U1 + 2U2 +

1
6 (Y −X) ⇒ 7

6X − 1
6Y = 10

3 U1 + 2U2

Y = 2U1 + 6U2 +
1
2 (Y −X)) ⇒ 1

2X + 1
2Y = 2U1 + 6U2

X = 3U1 + 3U2

Y = U1 + 9U2

Note: This is an alternative to nodal anlysis: you get the same answer.
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Any urrent or voltage an be written X = a1U1 + a2U2 + a3U3 + . . ..

Using nodal analysis (slide 4-2) or else

superposition:

X = 1
3U1 +

2
3U2.

Suppose we know U2 = 6 mA, then

X = 1
3U1 +

2
3U2 = 1

3U1 + 4.

If all the independent soures exept for U1

have known �xed values, then

X = a1U1 + b

where b = a2U2 + a3U3 + . . . .

This has a straight line graph.



Superposition and Power

4: Linearity and

Superposition

Linearity Theorem

Zero-value soures

Superposition

Superposition

Calulation

Superposition and

dependent soures

Single Variable

Soure

⊲

Superposition and

Power

Proportionality

Summary

E1.1 Analysis of Ciruits (2018-10340) Linearity and Superposition: 4 � 8 / 10

The power absorbed (or dissipated) by a omponent always equals V I

where the measurement diretions of V and I follow the passive sign

onvention.

For a resistor V I = V
2

R
= I2R.

Power in resistor is P = (U1+U2)
2

10 = 6.4W

Power due to U1 alone is P1 =
U

2

1

10 = 0.9W

Power due to U2 alone is P2 =
U

2

2

10 = 2.5W

P 6= P1 + P2 ⇒ Power does not obey superposition.

You must use superposition to alulate the total V and/or the total I and

then alulate the power.
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From the linearity theorem, all voltages and urrents have the form

∑
aiUi

where the Ui are the values of the independent soures.

If you multiply all the independent soures by the same fator, k, then all

voltages and urrents in the iruit will be multiplied by k.

The power dissipated in any omponent will be multiplied by k2.

Speial Case:

If there is only one independent soure, U , then all voltages and urrents

are proportional to U and all power dissipations are proportional to U2.
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• Linearity Theorem: X =
∑

i
aiUi over all independent soures Ui

• Superposition: sometimes simpler than nodal analysis, often more

insight.

◦ Zero-value voltage and urrent soures

◦ Dependent soures - treat as independent and add dependeny

as an extra equation

• If all soures are �xed exept for U1 then all voltages and urrents in

the iruit have the form aU1 + b.

• Power does not obey superposition.

• Proportionality: multiplying all soures by k multiplies all voltages and

urrents by k and all powers by k2.

For further details see Hayt Ch 5 or Irwin Ch 5.
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From linearity theorem: V = aI + b.

Use nodal analysis:

KCL�X:

X

1 − 6 + X−V

2 = 0

KCL�V:

V−X

2 − I = 0

Eliminating X gives: V = 3I + 6.

There are in�nitely many networks with the same values of a and b:

These four shaded networks are equivalent beause the relationship

between V and I is exatly the same in eah ase.

The last two are partiularly simple and are respetively alled the Norton

and Thévenin equivalent networks.
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Thévenin Theorem: Any two-terminal network onsisting of resistors, �xed

voltage/urrent soures and linear dependent soures is externally

equivalent to a iruit onsisting of a resistor in series with a �xed voltage

soure.

We an replae the shaded part of the

iruit with its Thévenin equivalent

network.

The voltages and urrents in the unshaded

part of the iruit will be idential in both

iruits.

The new omponents are alled the

Thévenin equivalent resistane, RTh, and

the Thévenin equivalent voltage, VTh, of

the original network.

This is often a useful way to simplify a ompliated iruit (provided that

you do not want to know the voltages and urrents in the shaded part).
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A Thévenin equivalent iruit has

a straight line harateristi with

the equation:

V = RThI + VTh

⇔ I = 1
RTh

V −
VTh

RTh

-2 0 2 4 6 8
-3

-2

-1

0

1

V (V)

I (
m

A
)

Three important quantities are:

Open Ciruit Voltage: If I = 0 then VOC = VTh. (X-interept: o)

Short Ciruit Current: If V = 0 then ISC = −
VTh

RTh

(Y-interept: x)

Thévenin Resistane: The slope of the harateristi is

dI

dV
= 1

RTh

.

If we know the value of any two of these three quantities, we an work out

VTh and RTh.

In any two-terminal iruit with the same harateristi, the three

quantities will have the same values. So if we an determine two of them,

we an work out the Thévenin equivalent.
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We need any two of the following:

Open Ciruit Voltage: VOC = VTh = 6V

Short Ciruit Current: ISC = −
VTh

RTh

= −2mA

Thévenin Resistane: RTh = 2k + 1 k = 3 kΩ

Thévenin Resistane:

We set all the independent soures to zero (voltage soures → short iruit,

urrent soures→ open iruit). Then we �nd the equivalent resistane

between the two terminals.

The 3 k resistor has no e�et so RTh = 2k + 1 k = 3 k.

Any measurement gives the same result on an equivalent iruit.
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For a ompliated iruit, you an use

nodal analysis to �nd the Thévenin

equivalent diretly in the form:

V = VTh + IRTh.

Step 1: Label ground as an output terminal + label other nodes.

Step 2: Write down the equations (Y is a supernode)

X−V

2 + X

1 + X−Y

1 = 0

Y−3−V

1 + Y−X

1 + Y−3
2 = 0

V−Y+3
1 + V−X

2 − I = 0

Step 3: Eliminate X and Y and

solve for V in terms of I:

V = 7
5I −

3
5 = RThI + VTh



Norton Equivalent

5: Thévenin and

Norton Equivalents

Equivalent Networks

Thévenin Equivalent

Thévenin Properties

Determining

Thévenin

Compliated Ciruits

⊲ Norton Equivalent

Power Transfer

Soure

Transformation

Soure

Rearrangement

Series Rearrangement

Summary

E1.1 Analysis of Ciruits (2017-10110) Thevenin and Norton: 5 � 7 / 12

Norton Theorem: Any two-terminal network onsisting of resistors, �xed

voltage/urrent soures and linear dependent soures is externally

equivalent to a iruit onsisting of a resistor in parallel with a �xed urrent

soure.

KCL: −I − INo +
V

RTh

= 0

⇔ I = 1
RTh

V − INo

.f. Thévenin (slide 5-4):

Same R and INo = VTh

RTh
-2 0 2 4 6 8

-3

-2

-1

0

1

V (V)

Open Ciruit Voltage: If I = 0 then VOC = INoRTh.

Short Ciruit Current: If V = 0 then ISC = −INo

Thévenin Resistane: The slope of the harateristi is

1
RTh

.

Easy to hange between Norton and Thévenin: VTh = INoRTh.

Usually best to use Thévenin for small RTh and Norton for large RTh

ompared to the other impedanes in the iruit.
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Suppose we onnet a variable resistor, RL, aross a two-terminal network.

From Thévenin's theorem, even a ompliated network is equivalent to a

voltage soure and a resistor.

We know I = VTh

RTh+RL

⇒ power in RL is PL = I
2
RL =

V
2

Th
RL

(RTh+RL)2

To �nd the RL that maximizes PL:

0 = dPL

dRL

=
(RTh+RL)2V 2

Th
−2V 2

Th
RL(RTh+RL)

(RTh+RL)4

=
V

2

Th
(RTh+RL)−2V 2

Th
RL

(RTh+RL)3

⇒ V
2
Th

((RTh +RL)− 2RL) = 0

⇒ RL = RTh ⇒ P(max) =
V

2

Th

4RTh

For �xed RTh, the maximum power transfer is

when RL = RTh (�mathed load �).
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Sometimes hanging between Thévenin and Norton an simplify a iruit.

Suppose we want to alulate I.

Norton → Thévenin on urrent soure: I = 18−(−10)
5 = 5.6 A

If you an't spot any lever triks, you an always �nd out everything with

nodal analysis.

−6 + X

3 + X−(−10)
2 = 0

⇒ 5X = 36− 30 = 6

⇒ X = 1.2

⇒ I = X−(−10)
2 = 5.6
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If all but one branhes onneting to a node are voltage soures or are

urrent soures, you an hoose any of the branhes to be the soureless

one.

Voltage Soures:

We an use the left

node as the referene

=

Current Soures:

KCL gives urrent into

rightmost node

=
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If we have any number of voltage soures and resistors in series we an

alulate the total voltage aross the hain as:

V = 8I − 2 + 7I + 5 + 9I = (−2 + 5) + (8 + 7 + 9)I

= 3 + 24I

We an arbitrarily

rearrange the order of

the omponents

without a�eting

V = 3 + 24I.

If we move all the voltage soures together and all the resistors together we

an merge them and then we get the Thévenin equivalent.
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• Thévenin and Norton Equivalent Ciruits

◦ A network has Thévenin and Norton equivalents if:

⊲ only 2 terminals onnet it to the outside world

⊲ it is made of resistors + soures + linear dependent soures

◦ How to determine VTh, INo and RTh

⊲ Method 1: Connet urrent soure → Nodal analysis

⊲ Method 2: Find any two of:

(a) VOC = VTh, the open-iruit voltage

(b) ISC = −INo, the short-iruit urrent

() RTh, equivalent resistane with all soures set to zero

⊲ Related by Ohm's law: VTh = INoRTh

• Load resistor for maximum power transfer = RTh

• Soure Transformation and Rearrangement

For further details see Hayt Ch 5 & A3 or Irwin Ch 5.
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An op amp (operational ampli�er) is a

iruit with two inputs and one output.

Y = A (V+ − V
−
)

The gain, A, is usually very large: e.g. A = 105 at low frequenies.

The input urrents are very small: e.g. ±1 nA.

Internally it is a ompliated iruit with

about 40 omponents, but we an forget

about that and treat it as an almost

perfet dependent voltage soure.

Integrated iruit pins are

numbered anti-lokwise from

blob or noth (when looking

from above).
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In a entral heating system, if the temperature falls too low the thermostat

turns on the heating, when it rises the thermostat turns it o� again.

Negative feedbak is when the ourene of an event auses something to

happen that ounterats the original event.

If op-amp output Y falls then V
−

will fall by

the same amount so (V+ − V
−
) will inrease.

This auses Y to rise sine

Y = A (V+ − V
−
).

Y = A (X − Y )

Y (1 + A) = AX ⇒ Y = 1

1+1/AX → X for large A

If Y = A(V+ − V
−
) then V+ − V

−
= Y

A whih, sine A ≃ 105, is normally

very very small.

Golden Rule: Negative feedbak adjusts the output to make V+ ≃ V
−

.
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Nodal analysis is simpli�ed by making some assumptions.

Note: The op-amp needs two power supply

onnetions; usually +15V and −15V.

These are almost always omitted from the

iruit diagram. The urrents only sum to

zero (KCL) if all �ve onnetions are

inluded.

1. Chek for negative feedbak: to ensure that an inrease in Y makes

(V+ − V
−
) derease, Y must be onneted (usually via other

omponents) to V
−

.

2. Assume V+ = V
−

: Sine (V+ − V
−
) = Y

A , this is the same as assuming

that A = ∞. Requires negative feedbak.

3. Assume zero input urrent: in most iruits, the urrent at the op-amp

input terminals is muh smaller than the other urrents in the iruit,

so we assume it is zero.

4. Apply KCL at eah op-amp input node separately (input urrents = 0).

5. Do not apply KCL at output node (output urrent is unknown).
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Ciruit has input voltage X and output voltage Y . The iruit gain , Y
X .

Applying steps 1 to 3:

1. Negative feedbak OK.

2. V
−
= V+ = X

3. Zero input urrent at V
−

means R2 and R1 are in series

(⇒ same urrent) and form a voltage divider. So X = R1

R1+R2

Y .

So Y =R1+R2

R1

X =
(

1 + R2

R1

)

X = +4X.

Non-inverting ampli�er beause the gain

Y
X is positive.

Consequene of X onneting to V+ input.

Can have any gain ≥ 1 by hoosing the ratio

R2

R1

.

Cause/e�et reversal: Potential divider auses V
−
= 1

4
Y .

Feedbak inverts this so that Y = 4V+.
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A speial ase of the non-inverting ampli�er

with R1 = ∞ and/or R2 = 0.

Gain is 1 + R2

R1

= 1.

Output Y �follows� input X.

Advantage: Can supply a large urrent at Y while drawing almost no

urrent from X. Useful if the soure supplying X has a high resistane.

Without voltage follower: Y = 0.01U .

With voltage follower: Y = U .

Although the voltage gain is only 1, the power gain is muh larger.
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Negative feedbak OK.

Sine V+ = 0, we must have V
−
= 0.

KCL at V
−

node:

0−X
R1

+ 0−Y
R2

= 0 ⇒ Y = −R2

R1

X = −3X.

Inverting Ampli�er beause gain

Y
X is negative. Consequene of X

onneting to the V
−

input (via R1).

Can have any gain ≤ 0 by hoosing the ratio

R2

R1

.

Negative feedbak holds V
−

very lose to V+.

If V+ = 0V, then V
−

is alled a virtual earth or virtual ground .

Nodal Analysis: Do KCL at V+ and/or V
−

to solve iruit. When analysing

a iruit, you never do KCL at the output node of an opamp beause its

output urrent is unknown. The only exeption is if you have already solved

the iruit and you want to �nd out what the op amp output urrent is

(e.g. to hek it is not too high).
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We an onnet several input signals to the

inverting ampli�er.

As before, V
−
= 0 is a virtual earth due to

negative feedbak and V+ = 0.

KCL at V
−

node:

0−X1

R1

+ 0−X2

R2

+ 0−X3

R3

+ 0−Y
RF

= 0

⇒ Y = −
(

RF

R1

X1 +
RF

R2

X2 +
RF

R3

X3

)

⇒ Y = − (8X1 + 4X2 + 4X3).
Y is a weighted sum of the input voltages with the weight of Xi equal to

−RF

Ri
= −GiRF .

Input Isolation: The urrent through R1 equals

X1−0

R1

whih is not a�eted

by X2 or X3. Beause V
−

is held at a �xed voltage, the inputs are isolated

from eah other.
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A 2-input iruit ombining inverting

and non-inverting ampli�ers.

Linearity ⇒ Z = aX + bY .

Use superposition to �nd a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have an

inverting ampli�er, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We an redraw iruit to make it look more familiar: a

potential divider followed by a non-inverting ampli�er.

R3 and R4 are a potential divider (sine urrent into V+ equals zero), so

V+ = R4

R3+R4

Y = 3

4
Y .

The non-inverting ampli�er has a gain of

R1+R2

R1

= 4.

The ombined gain is b = R4

R3+R4

× R1+R2

R1

= 3

4
× 4 = +3.

Combining the two gives Z = 3 (Y −X). The output of a di�erential

ampli�er is proportional to the di�ferene between its two inputs.
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Positive feedbak: If op-amp output Y rises then

(V+ − V
−
) will inrease. This auses Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,

(V+ − V
−
) > 0 so the output stays at +14V.

If X > 4, then (V+ − V
−
) < 0, Y will rapidly

swith to its minimum value (e.g. −14V).

Now Z = −4 and Y will only swith bak to +14

when X falls below −4.

Negative feedbak stabilizes the output to make

V+ ≃ V
−

.

Positive feedbak adjusts the output to maximize

|V+ − V
−
|. Output will swith between its

maximum and minimum values, e.g. ±14V

(slightly less than the ±15V power supplies).

Swithing will happen when V+ = V
−

.
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The behaviour of an op-amp iruit depends on the ratio of resistor values:

gain =

−R2/R1. How do you hoose between

3Ω/1Ω, 3 kΩ/1 kΩ ,

3MΩ/1MΩ

and

3GΩ/1GΩ?

Small resistors ause large urrents.

If X = ±1V, then Y = ∓3V,

and so I = Y−0

R2

= ∓1A.

However typial op-amps an only supply

±5mA, so the iruit will not work.

Large resistors inrease sensitivity to

interferene and to op-amp input urrents.

If the bias urrent into V
−

is IB = 1nA,

then KCL at V
−

gives

0−Y
R2

+ 0−X
R1

+ IB = 0 ⇒ Y = −R2

R1

X + IBR2 = −3X + 3

instead of Y = −3X.

Within wide limits, the absolute resistor values have little e�et.

However you should avoid extremes.
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• Ideal properties:

◦ Zero input urrent

◦ In�nite gain

◦ Do not use KCL at output (exept to determine output urrent).

• Negative Feedbak iruits:

◦ Assume V+ = V
−

and zero input urrent

◦ Standard ampli�er iruits:

⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain =

−R2/R1

⊲ Summing ampli�er

⊲ Di�erential Ampli�er

• Positive feedbak iruits:

◦ VOUT = ±Vmax (no good for an ampli�er)

◦ Shmitt Trigger: swithes when V+ = V
−

.

• Choosing resistors: not too low or too high.

For further details see Hayt Ch 6 or Irwin Ch 4.
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In the non-inverting op amp iruit we take a

fration of the output signal, Y , and subtrat it

from the input signal, X.

We an represent this using a blok diagram:

A = Y

E

: the gain of the op amp

B = W

Y
= 1

4

: gain of the feedbak path

The �+� and ��� signs indiate that the feedbak is

subtrated from X to give an �error� signal, E.

A gain blok has one input and one output

(indiated here by an arrow): V = A× U

An adder blok many inputs and one output. The

signs indiate whether eah input is added or

subtrated: Q = P1 + P2 − P3

Normally, inputs are on the left and outputs are on the right.
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• Label inputs, output and adder outputs

• Write down equations for the output and all adder outputs

Y = AE

E = X −BY

Never use Kiho�'s urrent law in blok diagrams.

• Solve the equations by eliminating unwanted variables

Y = AE= A (X −BY )= AX −ABY

⇒ Y (1 +AB) = AX ⇒ Y

X
= A

1+AB

AB is alled the loop gain of the iruit. If you

break the loop at any point and injet a signal ∆

after the break, this will ause the other side of the

break to hange by −∆×AB.
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Sometimes we have an additional blok at the

input shown here as C.

We see that E = CX −BY and, as before,

Y = AE

Eliminating E :

Y

X
= CA

1+AB
= C

A−1+B
≈ C

B

provided A−1 ≪ B.

Y

X

equals the forward gain, CA, divided by the loop gain plus one.

Inverting Ampli�er

Error signal is E , V+ − V−

Hene V+ = 0 ⇒ V− = −E

Op-amp output is Y = AE where A ≈ 105 is

the op-amp gain.

Use superposition, nodal analysis or weighted average formula to �nd an

expression for −E in terms of X and Y :

−E =
1

1
X+ 1

3
Y

1

1
+ 1

3

= 3

4
X + 1

4
Y = − (CX − BY )

Hene C = − 3

4
and B = + 1

4

and

Y

X
≈ C

B
= −3
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Central Heating:

X: Desired temperature

Y : Atual room temperature

A: Rather ompliated system of

boiler and radiators

Steam Engine Governor:

X: Desired Speed

Y : Atual Speed

A: Rotational speed auses weights to �y apart

(entrifugal fore) whih adjusts the steam

supply via a throttle valve.

Many Other Examples:

Eonomis: Demand↑ ⇒Prie↑ ⇒Supply↑ ⇒Supply=Demand

Biology: More rabbits ⇒Not enough food ⇒Less rabbits ⇒Enough food
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1) Gain Stabilization

The gain of a feedbak system is almost entirely determined by the

feedbak path and not by the gain of the ampli�ation path. This means

that you an get preditable gains even when the gain of the

ampli�ation path is unknown or time-varying.

2) Distortion Redution

High power ampli�ers are often non-linear, e.g. their gain dereases at

high signal amplitudes. Sine the gain of a feedbak system does not

depend muh on the gain of the ampli�ation path, the non-linearity has

little e�et.

3) Interferene Rejetion

External disturbanes have little e�et on the output of a feedbak

system beause the feedbak adjusts to ompensate for them.
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Gain is

Y

X
= A

1+AB
= 1

A−1+B

If A is very large then

Y

X
≈ 1

B

and the preise value

of A makes no di�erene.

�very large� means A−1 ≪ B ⇔ A ≫ 1

B

. So as long as A is muh larger

than the desired gain, its atual value does not matter.

For an op amp A ≈ 105 at low frequenies but less at high frequenies.

Motor Speed Control:

A is the �gain� of the ampli�er and motor

(units = rotation speed per volt = rad.s−1V −1

).

A annot be preisely known: it depends on

mehanial load and frition.

However this is OK so long as it is large enough.

We an sense the motor speed using gear-teeth and

a magneti (Hall e�et) sensor together with a

iruit that onverts frequeny to voltage.
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If A inludes a high-power ampli�er and/or

a mehanial system (e.g. a motor) it is

almost always non-linear.

y = 15x− 2x3

: gain dereases at high |x|
-1 0 1

-20

-10

0

10

20

x,u

y(x)

y(u)

x = sin t ⇒ y = 15 sin t− 2 sin3 t
⇒ y = 13.5 sin t+ 0.5 sin 3t

The gain is only 13.5 instead of 15

and harmoni distortion is added at a

multiple of the original frequeny.

The total harmoni distortion (THD)

is equal to

0.5
2

13.52
= 0.14%.

0 5 10 15
-20

-10

0

10

20

Time

 

 

13.5x(t)
y(t)
Error

Use feedbak to redue distortion

Put in feedbak loop with ×100 gain,

A = Y

E
= 100 Y

X

and B = 1

15

Even though A depends on the signal amplitude, the gain is

Y

U
≈ 1

B
= 15.
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The easiest way to derive trigonometrial identities is to use De Moivre's theorem

cos 3t+ i sin 3t = (cos t+ i sin t)3 = cos3 t+ 3i sin t cos2 t− 3 sin2 t cos t− i sin3
t.

Taking the imaginary part of both sides gives

sin 3t = 3 sin t cos2 t− sin3 t = 3 sin t
(

1− sin2 t
)

− sin3
t = 3 sin t− 4 sin3 t

and hene

sin3 t = 3

4
sin t−

1

4
sin 3t.
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The ampli�er output, Y , is a�eted by interferene, Z.

Y = average of 4X and Z weighted by ondutanes:

Y =
1

RO
4X+ 1

RZ
Z

1

RO
+ 1

RZ

= 3.996X + 1

1001
Z

Z is often muh bigger than X (e.g. mains � 230V).
RO is ampli�er output resistane.

Use feedbak to rejet interferene

Opamp gain = A ≈ 105⇒ X = A
(

U − Y

4

)

Y =
1

RO
4X+ 1

RZ
Z+ 1

4k
0

1

RO
+ 1

RZ
+ 1

4k

= 3.899X + 1

1026
Z

Eliminate X : Y = 4U + 1

100001026
Z

Interferene redued by the loop gain ≈ 105 .

�Interferene� inludes any external in�uene that

may a�et the output.

E.g. the mehanial load hanging on a motor or

an opened window in a heating system.
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Gain is

Y

X
= A

1+AB
= 1

A−1+B
≈ 1

B

If multiplying by B is easier than dividing by B, use

feedbak to multiply by

1

B

.

Division Ciruit

Multiplier iruit is quite easy to make: T = P ×Q

Use in feedbak loop to give Y = X

P

P must be +ve to ensure negative feedbak.

Phase Lok Loop

Easy to make a voltage ontrolled

osillator with fO = k × v

Phase omparator output is v ∝
∫

(fIN − fO) dt so v inreases whenever

fO < fIN and dereases when fO > fIN . When v reahes equilibrium, we

must have fO = fIN so v = 1

k
× fIN .

We have generated a voltage proportional to the input frequeny.

Used in FM radios and in many other iruits.
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The biggest problem of feedbak systems is the

possibility of instability.

Gain is

Y

X
= A

1+AB

. We have four ases:

AB > 0 Normal:

Y

X
≈ 1

B
< A

−1 < AB < 0 Inreased Gain:

Y

X
> A

AB = −1 Y

X
= ∞

AB < −1 Usually saturates or osillates if AB > 0 at DC

Delays are Death

For a sine wave, a delay anywhere within the loop of

half a period (e.g. 0.5 ms for 1 kHz) is the same as

multiplying by −1. At this frequeny the loop gain,

AB, is large and negative so the system beomes

unstable and osillates.

Quite a ommon problem: steering a boat, walking

when drunk, balaning a stik.

© Siene made simple
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Why negative feedbak is wonderful:

• The preise value of A does not matter as long as it is big enough

beause the gain is determined by the feedbak, B.

• It makes no di�erene if A varies with time or with signal amplitude

(i.e. A is non-linear).

• The e�et of external interferene at the output is redued by the

loop

gain, AB.

• If making a gain B is easy, you an use feedbak to make B−1

.

The one thing that an go wrong:

• Phase lags or delays an make a feedbak system unstable

(osillate).

• Must make sure that as frequeny inreases, the loop gain falls

below 1 before the phase shift reahes −180◦.
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The harateristi of a omponent is a

plot of I against V using the passive

sign onvention.

All our omponents have had

straight-line harateristis.

An ideal diode allows urrent to �ow in one

diretion only.

Its harateristi is not a straight line, but is

made from two straight line segments:

pieewise-linear . Eah segment is a mode of

operation.

Eah mode applies only when a partiular ondition is true:

Mode Condition Equation

Conduting (or �forward bias� or �on�) I > 0 V = 0

Non-onduting (or �reverse bias� or �o��) V < 0 I = 0
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To analyse a iruit with a diode in it, you �rst guess whih mode it is

operating in, solve the iruit and then hek the ondition.

If you guessed wrongly, the ondition will not be met.

Mode Condition Equation

Conduting I > 0 VD = 0

Non-onduting VD < 0 I = 0

Voltage aross diode is VD = U −X.

Current through diode is I = X
2
mA.

Assume Conduting Mode ⇒ VD = 0
VD = 0⇒ X = U = −6⇒ I = −3

but ondition is I > 0 so bad guess

Assume Non-onduting Mode ⇒ I = 0
I = 0⇒ X = 2I = 0⇒ VD = U −X = −6

ondition is VD < 0 so good guess

Current �ows from anode to athode.
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How does X hange with U ?

Voltage aross diode is VD = Y − 3.

Current through diode is ID = X−Y
1

mA.

Assume Conduting Mode ⇒ Y = 3

KCL:

X−U
4

+ X−3

1
+ X

4
= 0

⇒ X = 1

6
U + 2

ID = X−3

1
= 1

6
U − 1

ID > 0 ⇔ U > 6

Assume Non-onduting Mode

⇒ ID = 0

Potential Div: X = Y = 1

2
U

VD = Y − 3 = 1

2
U − 3

VD < 0 ⇔ U < 6
0 5 10

0

2

4

U (Volts)

Diode swithes between regions where the graphs interset (U = 6).

At this point both the diode equations, VD = 0 and ID = 0, are true.
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Bridge Reti�er: 4 diodes:

D1 and D2 both point towards node X.

D3 and D4 both point away from ground.

The input voltage is U = B −A.

Case 1: U > 0. D1,D4 on ⇒ X = U

Chek D1, D4: I1 = I4 = I = U
100

> 0

Chek D2, D3: V2 = V3 = −U < 0

All diodes OK

Case 2: U < 0. D2,D3 on ⇒ X = −U

Chek D2, D3: I2,3 = I = −U
100

> 0

Chek D1, D4: V1 = V4 = U < 0

All diodes OK

X is always equal to |U |: this is an absolute

value iruit.

If U is a sine wave, then X is a full-wave

reti�ed sine wave with twie the frequeny.

Note: In,Vn apply to diode n

0 5 10 15
-1

0

1

Time

0 5 10 15
-1

0

1

Time
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An ideal diode allows has V = 0

whenever it is �on�.

A real diode has a voltage drop that depends approximately logarithmially

on the urrent: it inreases by about 0.1V for every 50-fold inrease in

urrent.

For a wide range of urrents we an treat V as almost onstant:

(a) For low-urrent iruits (e.g I < 20mA): V ≃ 0.7V.

(b) For high-urrent iruits: V ≃ 1.0V.

The two regions of operation are now:

Region Condition Equation

Conduting Mode (�on�) I > 0 V = 0.7

Non-onduting Mode (�o��) V < 0.7 I = 0
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A halfwave reti�er aims for X = max(U, 0)

(a) U > 0.7

Diode on, X = U − 0.7, I = U−0.7
2 k

> 0

(b) U < 0.7

Diode o�, I = 0, X = 0, VD = U < 0.7

We atually have X = max(U − 0.7, 0)

(1) u(t) = 20 sinωt

The 0.7V drop makes little

di�erene.

(2) u(t) = sinωt

The 0.7V drop makes a big

di�erene.
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-20

0

20

Time

0 5 10 15 20
-1

0

1

Time



Preision Halfwave Reti�er

8: Nonlinear

Components

Ideal Diode

Operating modes

Swithing Point

Bridge Reti�er

Non-Ideal Diode

Halfwave Reti�er

⊲

Preision Halfwave

Reti�er

Summary

E1.1 Analysis of Ciruits (2017-10117) Nonlinear Components: 8 � 8 / 9

Both op-amps have negative feedbak, so A = B = 0.

Seond op-amp is an inverting ampli�er so X = −Y .

Case 1: U > 0. D2 on ⇒ W = Y − 0.7

KCL � A:

0−U
10

+ 0−Y
10

= 0
⇒ Y = −U

KCL � Y:

Y−0

10
+ Y−0

10
+ I2 = 0

⇒ I2 = U
5
> 0

Chek D1: V1 = −U − 0.7 < 0.7

Both diodes OK

Output: X = −Y = U

Case 2: U < 0. D1 on ⇒ W = 0.7

KCL � Y:

Y−0

10
+ Y−0

10
= 0 ⇒ Y = 0

KCL � A:

0−U
10

+ 0−0

10
+−I1 = 0

⇒ I1 = − U
10

> 0

Note: In,Vn apply to diode n

So X = max(U, 0)

Putting diodes in a feedbak

loop allows their voltage

drops to be eliminated.

Chek D2: V2 = Y −W = −0.7 < 0.7

Both diodes OK

Output: X = −Y = 0
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• Beware: a nonlinear iruit does not obey superposition

• Ideal diode:

◦ Two regions of operation:

⊲ Conduting Mode ( = �on�): V = 0 and I > 0
⊲ Non-onduting Mode ( = �o��): I = 0 and V < 0

• Solving a diode iruit:

◦ (a) Guess region

◦ (b) Solve iruit: assuming V = 0 or I = 0
◦ () Chek ondition: either I > 0 or V < 0

• Real diode: V ≃ 0.7 in Conduting Mode (≃ 1.0 for high urrents)

• Fullwave and halfwave reti�er iruits

• Preision Reti�er Ciruit

◦ Use an opamp to eliminate the 0.7V diode drop.

For further details see Irwin Ch 17.
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A apaitor is formed from two onduting plates separated by a thin

insulating layer.

If a urrent i �ows, positive hange, q, will

aumulate on the upper plate. To preserve

harge neutrality, a balaning negative harge

will be present on the lower plate.

There will be a potential energy di�erene (or voltage v) between the plates

proportional to q.

v = d
Aǫ

q where A is the area of the plates, d is their separation and ǫ is the

permittivity of the insulating layer (ǫ0 = 8.85 pF/m for a vauum).

The quantity C = Aǫ
d

is the apaitane and is measured in Farads (F),

hene q = Cv.

The urrent, i, is the rate of harge on the plate, hene the

apaitor equation: i = dq
dt

= C dv
dt

.
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Capaitor symbol represents the two separated

plates. Capaitor types are distinguished by the

material used as the insulator.

Polystyrene: Two sheets of foil separated by a

thin plasti �lm and rolled up to save spae.

Values: 10 pF to 1 nF.

Cerami: Alternate layers of metal and erami

(a few µm thik). Values: 1 nF to 1µF.

Eletrolyti: Two sheets of aluminium foil

separated by paper soaked in onduting

eletrolyte. The insulator is a thin oxide layer

on one of the foils. Values: 1µF to 10mF.

Eletrolyti apaitors are polarised: the foil with the oxide layer must

always be at a positive voltage relative to the other (else explosion).

Negative terminal indiated by a urved plate in symbol or �-�.
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Indutors are formed from oils of wire, often

around a steel or ferrite ore.

The magneti �ux within the oil is Φ = µNA
l

i where N is the number of

turns, A is the ross-setional area of the oil and l is the length of the oil

(around the toroid).

µ is a property of the material that the ore is made from and is alled its

permeability . For free spae (or air): µ0 = 4π × 10−7 = 1.26 µH/m, for

steel, µ ≈ 4000µ0 = 5mH/m.

From Faraday's law: v = N dΦ
dt

= µN2A
l

di
dt

= L di
dt

.

We measure the indutane, L = µN2A
l

, in Henrys (H).
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We an desribe all three types of passive omponent by the relationship

between V and I using, in eah ase, the passive sign onvention.

Resistor: v = Ri

Indutor: v = L di
dt

Capaitor: i = C dv
dt

Notes: (1) There are no minus signs anywhere whatever you were taught at

shool.

(2) We use lower ase, v, for time-varying voltages.
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v = v1 + v2= L1
di
dt

+ L2
di
dt

= (L1 + L2)
di
dt

Same equation as a single indutor of value L1 + L2

di
dt

= d(i1+i2)
dt

= di1
dt

+ di2
dt

= v
L1

+ v
L2

= v
(

1
L1

+ 1
L2

)

v = 1
1

L1
+ 1

L2

di
dt

Same as a single indutor of value

1
1

L1
+ 1

L2

= L1L2

L1+L2

Indutors ombine just like resistors.
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i = i1 + i2= C1
dv
dt

+ C2
dv
dt

= (C1 + C2)
dv
dt

Same equation as a single apaitor of value C1 + C2

dv
dt

= d(v1+v2)
dt

= dv1
dt

+ dv2
dt

= i
C1

+ i
C2

= i
(

1
C1

+ 1
C2

)

i = 1
1

C1
+ 1

C2

dv
dt

Same as a single apaitor of value

1
1

C1
+ 1

C2

= C1C2

C1+C2

Capaitors ombine just like ondutanes (i.e. parallel apaitors add).
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Capaitor: i = C dv
dt

For the voltage to hange abruptly

dv
dt

= ∞ ⇒ i = ∞.

This never happens so ...

The voltage aross a apaitor never hanges instantaneously.

Informal version: A apaitor �tries� to keep its voltage onstant.

Indutor: v = L di
dt

For the urrent to hange abruptly

di
dt

= ∞ ⇒ v = ∞.

This never happens so ...

The urrent through an indutor never hanges instantaneously.

Informal version: An indutor �tries� to keep its urrent onstant.
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For a apaitor i = C dv
dt

. Take the average of both sides:

1
t2−t1

∫ t2

t1
idt = 1

t2−t1

∫ t2

t1
C dv

dt
dt= C

t2−t1

∫ v(t2)

v(t1)
dv

= C
t2−t1

[v]
v(t2)
v(t1)

= C
t2−t1

(v(t2)− v(t1))

(1) If v(t1) = v(t2) then the average

urrent exatly equals zero.

(2) If v is bounded then the average urrent

→ 0 as (t2 − t1) → ∞.

The average urrent through a apaitor is zero and, likewise, the average

voltage aross an indutor is zero. The iruit symbols remind you of this.

�Average� an either be over an exat number of periods of a repetitive

waveform or else the long-term average (provided v and i remain bounded).

�v is bounded� means |v| always stays less than a prede�ned maximum

value.
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[Do not memorize this iruit℄

A buk onverter onverts a high

voltage, V , into a lower one, Y .

The swith, S, loses for a fration a

of the time. a is the duty yle and

is

1
3 in this example.

When S is losed, x = v, and a

urrent iL �ows.

When S opens, the urrent iL annot

hange instantly and so it must

�ow through the diode (we

assume the diode is ideal).

The average value of x is aV ⇒ the average value of y must also be aV .

The average urrent through R is

aV
R

so, sine the average urrent through

C must be zero, the average urrent iL must also be

aV
R

.

C dy
dt

= iL − iR ⇒ if C is large, then the variations in y will be very small.
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Eletrial power absorbed by any omponent at the instant t is v(t)× i(t).

So total energy absorbed between times t1 and t2 is W =
∫ t2

t=t1
vi dt.

For a apaitor i = C dv
dt

, so

W = C
∫ t2

t=t1
v dv
dt
dt= C

∫ v(t2)

v=v(t1)
vdv

= C
[

1
2v

2
]v(t2)

v(t1)
= 1

2C
(

v2(t2)− v2(t1)
)

If v(t1) = v(t2) then there has been no nett

energy absorbed: all the energy absorbed

when the voltage rises is returned to the

iruit when it falls.

The energy stored in a apaitor is

1
2Cv2 and likewise in an indutor

1
2Li

2

.

If v and i remain bounded, then the average power absorbed by a apaitor

or indutor is always zero.
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• Capaitor:

◦ i = C dv
dt

◦ parallel apaitors add in value

◦ average i is zero, v never hanges instantaneously.

◦ average power absorbed is zero

• Indutor:

◦ v = L di
dt

◦ series indutors add in value (like resistors)

◦ average v is zero, i never hanges instantaneously.

◦ average power absorbed is zero

For further details see Hayt Ch 7 or Irwin Ch 6.
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For indutors and apaitors i = C dv
dt

and v = L di
dt

so we need to

di�erentiate i(t) and v(t) when analysing iruits ontaining them.

Usually di�erentiation hanges the

shape of a waveform.

For bounded waveforms there is

only one exeption:

0 1 2 3 4
-1

0

1

t

0 1 2 3 4
-5

0

5

t

v(t) = sin t ⇒ dv
dt

= cos t

same shape but with a time shift.

sin t ompletes one full period every

time t inreases by 2π.

0 5 10 15
-1

0

1

t

v(
t)

0 5 10 15
-1

0

1

t

dv
/d

t

sin 2πft makes f omplete repetitions every time t inreases by 1; this

gives a frequeny of f yles per seond, or f Hz.

We often use the angular frequeny , ω = 2πf instead.

ω is measured in radians per seond. E.g. 50Hz ≃ 314 rad.s−1

.
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A useful way to think of a osine wave is as the

projetion of a rotating rod onto the horizontal axis.

For a unit-length rod, the projetion has length cos θ.

If the rod is rotating at a speed of f revolutions per

seond, then θ inreases uniformly with time:

θ = 2πft.

The only di�erene between cos and sin is the starting position of the rod:

0 5 10 15
-1

0

1

t

v = cos 2πft

0 5 10 15
-1

0

1

t

v = sin 2πft = cos
(

2πft− π
2

)

sin 2πft lags cos 2πft by 90◦ (or

π
2

radians) beause its peaks ours

1

4

of

a yle later (equivalently cos leads sin) .
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If the rod has length A and starts at an angle φ then the projetion onto

the horizontal axis is

A cos (2πft+ φ)
= A cosφ cos 2πft−A sinφ sin 2πft
= X cos 2πft− Y sin 2πft

At time t = 0, the tip of the rod has oordinates

(X, Y ) = (A cosφ, A sinφ).

If we think of the plane as an Argand Diagram (or omplex plane), then the

omplex number X + jY orresponding to the tip of the rod at t = 0 is

alled a phasor .

The magnitude of the phasor, A =
√
X2 + Y 2

, gives the amplitude (peak

value) of the sine wave.

The argument of the phasor, φ = arctan Y
X

, gives the phase shift relative

to cos 2πft.

If φ > 0, it is leading and if φ < 0, it is lagging relative to cos 2πft.
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V = 1, f = 50Hz
v(t) = cos 2πft

0 0.02 0.04 0.06
-1

0

1

t

V = −j

v(t) = sin 2πft
0 0.02 0.04 0.06

-1

0

1

t

V = −1− 0.5j = 1.12∠− 153◦

v(t) = − cos 2πft+ 0.5 sin 2πft
= 1.12 cos (2πft− 2.68)

V = X + jY

v(t) = X cos 2πft− Y sin 2πft

Beware minus sign.

V = A∠φ = Aejφ

v(t) = A cos (2πft+ φ)

A phasor represents an entire waveform (enompassing all time) as a single

omplex number. We assume the frequeny, f , is known.

A phasor is not time-varying, so we use a apital letter: V .

A waveform is time-varying, so we use a small letter: v(t).

Casio: Pol(X,Y ) → A, φ, Rec(A, φ) → X,Y . Saved → X & Y mems.



[Algebrai Phasor↔Waveform Mapping℄

E1.1 Analysis of Ciruits (2017-10213) Phasors: 10 � note 1 of slide 5

A phasor is a omplex number, V , that uniquely de�nes a waveform, v(t), via the mapping V =

Aejφ ←→ v(t) = A cos (2πft+ φ). It is sometimes onvenient to give an algebrai formula for this.

For the diretion V −→ v(t) the mapping is easy:

v(t) = ℜ
(

V ej2πft
)

= 1
2
(V + V ∗) cos 2πft+ 1

2
j (V − V ∗) sin 2πft.

The reverse mapping, V ←− v(t) is a bit more ompliated and we use a tehnique that you will also

use in the Maths of Fourier transforms. The mapping is given by

V = 2f

∫ 1

f

0
v(t)e−j2πftdt.

To onfrm that this is true, we an substitute v(t) = A cos (2πft+ φ) and do the integration:

2f

∫ 1

f

0
v(t)e−j2πftdt = Af

∫ 1

f

0

(

ej(2πft+jφ + e−j2πft−jφ
)

e−j2πftdt

= Af

∫ 1

f

0

(

ejφ + e−j4πft−jφ
)

dt = Aejφ +Afe−jφ

∫ 1

f

0
e−j4πftdt

= Aejφ +
Afe−jφ

−j4πf

[

e−j4πft
] 1

f

0
= Aejφ +

Afe−jφ

−j4πf

(

e−j4π
− 1

)

= Aejφ



Phasor arithmeti

10: Sine waves and

phasors

Sine Waves

Rotating Rod

Phasors

Phasor Examples +

⊲ Phasor arithmeti

Complex Impedanes

Phasor Analysis +

CIVIL

Impedane and

Admittane

Summary

E1.1 Analysis of Ciruits (2017-10213) Phasors: 10 � 6 / 11

Phasors

V = P + jQ

Waveforms

v(t) = P cosωt−Q sinωt

where ω = 2πf .

aV a× v(t) = aP cosωt− aQ sinωt

V1 + V2 v1(t) + v2(t)

Adding or saling is the same for waveforms and phasors.

V̇ = (−ωQ) + j (ωP )
= jω (P + jQ)
= jωV

dv
dt

= −ωP sinωt− ωQ cosωt
= (−ωQ) cosωt− (ωP ) sinωt

Di�erentiating waveforms orresponds to multiplying

phasors by jω.

Rotate anti-lokwise 90◦ and sale by ω = 2πf .
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Resistor:

v(t) = Ri(t) ⇒ V = RI ⇒ V
I
= R

Indutor:

v(t) = L di
dt

⇒ V = jωLI ⇒ V
I
= jωL

Capaitor:

i(t) = C dv
dt

⇒ I = jωCV ⇒ V
I
= 1

jωC

For all three omponents, phasors obey Ohm's law if we use the omplex

impedanes jωL and

1

jωC
as the �resistane� of an indutor or apaitor.

If all soures in a iruit are sine waves having the same frequeny, we an

do iruit analysis exatly as before by using omplex impedanes.
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Given v = 10 sinωt where ω = 2π × 1000, �nd

vC(t).

(1) Find apaitor omplex impedane

Z = 1

jωC
= 1

6.28j×10−4 = −1592j

(2) Solve iruit with phasors

VC = V × Z
R+Z

= −10j × −1592j
1000−1592j

= −4.5− 7.2j = 8.47∠− 122◦

vC = 8.47 cos (ωt− 122◦)
0 0.5 1 1.5 2

-10

0

10

t (ms)

C
R v

v
Cv

R

(3) Draw a phasor diagram showing KVL:

V = −10j
VC = −4.5− 7.2j
VR = V − VC = 4.5− 2.8j = 5.3∠− 32◦

Phasors add like vetors



[Di�erential Equation Analysis℄

E1.1 Analysis of Ciruits (2017-10213) Phasors: 10 � note 1 of slide 8

To solve the problem form the previous slide without using phasors, we de�ne i to be the urrent �owing

lokwise and use the apaitor equation i = C
dvC
dt

.

From KVL, we have v = vR + vC = iR+ vC .

Di�erentiating and applying the apaitor equation gives

dv
dt

= 10ω cosωt = R di
dt

+ 1
C
i.

We need to �nd the partiular integral for the above equation. To do so, we guess that the answer will

be of the form i = A cosωt+B sinωt and substitute it into the equation (multiplied by C).

10Cω cosωt = RC (−Aω sinωt+Bω cosωt) + (A cosωt+B sinωt)

= (A+RCBω) cosωt+ (B −RCAω) sinωt

whih gives two siultaneous equations: A + RCωB = 10Cω and −RCωA + B = 0. Substituting

values for R, C and ω gives A+0.628B = 0.00628 and −0.628A+B = 0. Solving these simultaneous

equations gives A = 4.5mA and B = 2.8mA.

The resistor voltage is therefore vR = iR = 4.5 cosωt + 2.8 sinωt and therefore, from KVL, the

apaitor votage is vC = v − vR = −4.5 cosωt+ 7.2 sinωt.

Thus we get the same answer as using phasors but with more work even for a simple iruit like this.

For more ompliated iruits the di�erene is muh muh bigger.
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Capaitors: i = C dv
dt

⇒ I leads V

Indutors: v = L di
dt

⇒ V leads I

Mnemoni: CIVIL = �In a apaitor I lead V but V leads I in an indutor�.

COMPLEX ARITHMETIC TRICKS:

(1) j × j = −j ×−j = −1

(2)

1

j
= −j

(3) a+ jb = r∠θ = rejθ

where r =
√
a2 + b2 and θ = arctan b

a

(±180◦ if a < 0)

(4) r∠θ = rejθ = (r cos θ) + j (r sin θ)

(5) a∠θ × b∠φ = ab∠ (θ + φ) and a∠θ
b∠φ

= a
b
∠ (θ − φ).

Multipliation and division are muh easier in polar form.

(6) All sienti� alulators will onvert retangular to/from polar form.

Casio fx-991 (available in all exams exept Maths) will do omplex

arithmeti (+,−,×,÷, x2, 1

x
, |x|, x∗) in CMPLX mode.

Learn how to use this: it will save lots of time and errors.
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For any network (resistors+apaitors+indutors):

(1) Impedane = Resistane + j× Reatane

Z = R+ jX (Ω)

|Z|2 = R2 +X2
∠Z = arctan X

R

(2) Admittane =

1

Impedance

= Condutane + j× Suseptane

Y = 1

Z
= G+ jB Siemens (S)

|Y |2 = 1

|Z|2
= G2 +B2

∠Y = −∠Z = arctan B
G

Note:

Y = G+ jB = 1

Z
= 1

R+jX
= R

R2+X2 + j −X
R2+X2

So G = R
R2+X2 = R

|Z|2

B = −X
R2+X2 = −X

|Z|2

Beware: G 6= 1

R

unless X = 0.
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E1.1 Analysis of Ciruits (2017-10213) Phasors: 10 � 11 / 11

• Sine waves are the only bounded signals whose shape is unhanged by

di�erentiation.

• Think of a sine wave as the projetion of a rotating rod onto the

horizontal (or real) axis.

◦ A phasor is a omplex number representing the length and position

of the rod at time t = 0.

◦ If V = a+ jb = r∠θ = rejθ, then

v(t) = a cosωt− b sinωt = r cos (ωt+ θ) = ℜ
(

V ejωt
)

◦ The angular frequeny ω = 2πf is assumed known.

• If all soures in a linear iruit are sine waves having the same

frequeny, we an use phasors for iruit analysis:

◦ Use omplex impedanes: jωL and

1

jωC

◦ Mnemoni: CIVIL tells you whether I leads V or vie versa

(�leads� means �reahes its peak before�).

◦ Phasors eliminate time from equations ,, onverts simultaneous

di�erential equations into simultaneous linear equations ,,,.

◦ Needs omplex numbers / but worth it.

See Hayt Ch 10 or Irwin Ch 8
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If x(t) is a sine wave, then y(t) will also be a sine

wave but with a di�erent amplitude and phase

shift. X is an input phasor and Y is the output

phasor.

The gain of the iruit is

Y
X =

1/jωC

R+1/jωC
= 1

jωRC+1

This is a omplex funtion of ω so we plot separate graphs for:

Magnitude:

∣

∣

Y
X

∣

∣ = 1
|jωRC+1| =

1√
1+(ωRC)2

Phase Shift: ∠
(

Y
X

)

= −∠ (jωRC + 1) = − arctan
(

ωRC
1

)

Magnitude Response Phase Response
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RC = 10ms

Y
X = 1

jωRC+1 = 1
0.01jω+1

0 0.5 1

-0.4

-0.2

0
X

Y
X-Y

ω=300

Real

Im
ag

ω = 50 ⇒ Y
X = 0.89∠− 27◦
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X = 0.71∠− 45◦

ω = 300 ⇒ Y
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|
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P
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 (
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The output, y(t), lags the input, x(t), by up to 90◦.
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We usually use logarithmi axes for frequeny and gain (but not phase)

beause % di�erenes are more signi�ant than absolute di�erenes.

E.g. 5 kHz versus 5.005 kHz is less signi�ant than 10Hz versus 15Hz even

though both di�erenes equal 5Hz.

Logarithmi voltage ratios are spei�ed in deibels (dB) = 20 log10
|V2|
|V1| .

Common voltage ratios:

|V2|
|V1|

0.1 0.5
√

0.5 1
√

2 2 10 100

dB −20 -6 -3 0 3 6 20 40

Note that 0 does not

exist on a log axis and

so the starting point of

the axis is arbitrary.

Note: P ∝ V 2 ⇒ deibel power ratios are given by 10 log10
P2

P1
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H = c (jω)r has a straight-line magnitude graph and a onstant phase.

Magnitude (log-log graph):

|H| = cωr ⇒ log |H| = log |c|+ r logω

This is a straight line with a slope of r.

c only a�ets the line's vertial position.

If |H| is measured in deibels, a slope of r

is alled 6r dB/otave or 20r dB/deade.

Phase (log-lin graph):

∠H = ∠jr + ∠c = r × π
2 (+π if c < 0)

The phase is onstant ∀ω.

If c > 0, phase = 90◦× magnitude slope.

Negative c adds ±180◦ to the phase.

Note: Phase angles are modulo 360◦, i.e.

+180◦ ≡ −180◦ and 450◦ ≡ 90◦.



[Otaves and Deades℄

E1.1 Analysis of Ciruits (2018-10340) Frequeny Responses: 11 � note 1 of slide 5

An �otave� is a fator of 2 in frequeny; for example, 20Hz is one otave greater than 10Hz. Similarly

a �deade� is a fator of 10 in frequeny; for example, 100Hz is one deade greater than 10Hz.

The number of deades between any two frequenies an be alulated by taking log10 of the frequeny

ratio. Thus, for the example given above, log10

(

100Hz
10Hz

)

= log10 (10) = 1 decade. A slightly more

ompliated example is log10

(

13 kHz
25Hz

)

= log10
(

13000
25

)

= log10 (520) = 2.716 decades so this means

that 13 kHz is 2.716 deades greater than 25Hz.

As we shall disover in this leture, frequeny response graphs an be approximated as a series of

straight lines whose gradients are easy to alulate. In partiular magnitude response graphs an be

approximated as a series of straight lines with gradients that are integer multiples of 20 dB per deade

and phase response graphs an be approximated as a series of straight lines with gradients that are

integer multiples of 0.25π radians per deade. This means that if you know the magnitude or phase at

one frequeny, you an alulate how muh it has hanged at any other frequeny by multiplying the

gradient of the line by the number of deades by whih the frequeny has hanged.

Calulating the number of otaves between any two frequenies is done in the same way exept that you

must take a base-2 log. Thus between 10Hz and 100Hz is log2

(

100Hz
10Hz

)

= log10

(

100Hz
10Hz

)

÷log10 2 =

3.322 log10

(

100Hz
10Hz

)

= 3.322 octaves. Thus one deade is equal to 3.322 otaves.
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Key idea: (ajω + b) ≈
{

ajω for |aω| ≫ |b|
b for |aω| ≪ |b|

Gain: H(jω) = 1
jωRC+1

Low frequenies (ω ≪ 1
RC ): H(jω) ≈ 1⇒ |H(jω)| ≈ 1

High frequenies (ω ≫ 1
RC ): H(jω) ≈ 1

jωRC⇒ |H(jω)| ≈ 1
RCω−1

Approximate the magnitude response

as two straight lines interseting at the

orner frequeny, ωc =
1

RC .

At the orner frequeny:

(a) the gradient hanges by −1 (= −6 dB/otave = −20 dB/deade).

(b) |H(jωc)| =
∣

∣

∣

1
1+j

∣

∣

∣
= 1√

2
= −3 dB (worst-ase error).

A linear fator (ajω + b) has a orner frequeny of ωc =
∣

∣

b
a

∣

∣

.
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The gain of a linear iruit is always a rational polynomial in jω and is

alled the transfer funtion of the iruit. For example:

H(jω) = 60(jω)2+720(jω)

3(jω)3+165(jω)2+762(jω)+600
= 20jω(jω+12)

(jω+1)(jω+4)(jω+50)

Step 1: Fatorize the polynomials

Step 2: Sort orner freqs: 1, 4, 12, 50

Step 3: For ω < 1 all linear fators equal

their onstant terms:

|H| ≈ 20ω×12
1×4×50 = 1.2ω1

.

Step 4: For 1 < ω < 4, the fator (jω + 1) ≈ jω so

|H| ≈ 20ω×12
ω×4×50 = 1.2ω0 = +1.58 dB.

Step 5: For 4 < ω < 12, |H| ≈ 20ω×12
ω×ω×50 = 4.8ω−1

.

Step 6: For 12 < ω < 50, |H| ≈ 20ω×ω
ω×ω×50 = 0.4ω0 = −7.96 dB.

Step 7: For ω > 50, |H| ≈ 20ω×ω
ω×ω×ω = 20ω−1

.

At eah orner frequeny, the graph is ontinuous but its gradient hanges

abruptly by +1 (numerator fator) or −1 (denominator fator).
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You an �nd the low and high frequeny asymptotes without fatorizing:

H(jω) = 60(jω)2+720(jω)

3(jω)3+165(jω)2+762(jω)+600
= 20jω(jω+12)

(jω+1)(jω+4)(jω+50)

Low Frequeny Asymptote:

From fators: HLF(jω) =
20jω(12)
(1)(4)(50) = 1.2jω

Lowest power of jω on top and bottom: H (jω) ≃ 720(jω)
600 = 1.2jω

High Frequeny Asymptote:

From fators: HHF(jω) =
20jω(jω)

(jω)(jω)(jω) = 20 (jω)
−1

Highest power of jω on top and bottom: H (jω) ≃ 60(jω)2

3(jω)3
= 20 (jω)

−1
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Gain: H(jω) = 1
jωRC+1

Low frequenies (ω ≪ 1
RC ):

H(jω) ≈ 1⇒ ∠1 = 0

High frequenies (ω ≫ 1
RC ): H(jω) ≈ 1

jωRC⇒ ∠j−1 = −π
2

Approximate the phase response as

three straight lines.

By hane, they interset lose to

0.1ωc and 10ωc where ωc =
1

RC .

Between 0.1ωc and 10ωc the phase hanges by −π
2 over two deades.

This gives a gradient = −π
4 radians/deade.

(ajω + b) in denominator

⇒ ∆gradient = ∓π
4 /deade at ω = 10∓1

∣

∣

b
a

∣

∣

.

The sign of ∆gradient is reversed for (a) numerator fators and (b)

b
a < 0.



[Phase Approximation ++℄

E1.1 Analysis of Ciruits (2018-10340) Frequeny Responses: 11 � note 1 of slide 9

Like the magnitude response, the phase response an be approximated by a graph that onsists of a

sequene of straight line segments that are joined at �orners�. For this to be true, we need to plot the

phase response using a linear axis for the phase but a logarithmi axis for the frequeny.

The previous slide showed the phase response of a �lter whose frequeny response, H(z), has a single

linear fator in the denominator. On the next slide this is extended to a more ompliated frequeny

response.

Reall that the argument of a omplex number is ∠ (a+ jb) = tan−1 b
a

and ∠
1

a+jb
= − tan−1 b

a

.

Therefore if the frequeny response is H(jω) = 1
jωRC+1

, then the phase is given by ∠H(jω) =

− tan−1 ωRC whih is plotted as the blue urve. At low frequenies, this tends to zero (sine tan−1 0 =
0) and at high frequenies it tends to −

π
2

(sine tan−1 ∞ = π
2

). The magnitude response graph has

a orner frequeny at ωc = 1
RC

and at this frequeny, ∠H(jωc) = − tan−1 1 = −
π
4

.

It turns out that we an approximate this urve with three straight lines whih meet at two �phase

response orner frequenies� of 0.1ωc and 10ωc. Sine the frequeny range 0.1ωc to 10ωc is two

deades (a fator of 100), the gradient of the entral segment of the approximation must be −
π
4

radians/deade. This approximation is not atually the best possible approximation using 3 straight

lines but it is very lose and muh easier to remember that the optimum approximation.

To summarise: A linear fator of (ajω + b) in the denominator will result in two orner frequenies in

the phase response at ω = 10−1
∣

∣

∣

b
a

∣

∣

∣

and 10+1
∣

∣

∣

b
a

∣

∣

∣

. At these frequenies, the gradient of the graph will

hange by −
π
4

and +π
4

radians/deade respetively. The signs of the gradient hanges will be reversed

for numerator fators and reversed again if

b
a

is negative (whih is rare and an only happen in the

numerator).
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H(jω) = 60(jω)2+720(jω)

3(jω)3+165(jω)2+762(jω)+600
= 20jω(jω+12)

(jω+1)(jω+4)(jω+50)

Step 1: Fatorize the polynomials

Step 2: List orner freqs: ± = num/den

ωc = {1−, 4−, 12+, 50−}

Step 3: Gradient hanges at 10∓1ωc.

Sign depends on num/den and sgn

(

b
a

)

:

.1−, 10+; .4−, 40+; 1.2+, 120−; 5−, 500+

Step 4: Put in asending order and alulate gaps as log10
ω2

ω1

deades:

.1− (.6) .4− (.48) 1.2+ (.62) 5− (.3) 10+ (.6) 40+ (.48) 120− (.62) 500+.

Step 5: Find phase of LF asymptote: ∠1.2jω = +π
2 .

Step 6: At ω = 0.1 gradient beomes −π
4 rad/decade. φ is still

π
2 .

Step 7: At ω = 0.4, φ = π
2 − 0.6π

4 = 0.35π. New gradient is −π
2 .

Step 8: At ω = 1.2, φ = 0.35π − 0.48π
2 = 0.11π. New gradient is −π

4 .

Steps 9-13: Repeat for eah gradient hange. Final gradient is always 0.

At 0.1 and 10 times eah orner frequeny, the graph is ontinuous but its

gradient hanges abruptly by ±π
4 rad/deade.



[Plot Phase Response ++℄

E1.1 Analysis of Ciruits (2018-10340) Frequeny Responses: 11 � note 1 of slide 10

Like the magnitude response, the phase response an be approximated by a graph that onsists of a

sequene of straight line segments that are joined at �orners�. For this to be true, we need to plot

the phase response using a linear axis for the phase but a logarithmi axis for the frequeny. As we

saw on the previous slide, eah linear fator in either the numerator or the denominator gives rise to

two orners in the phase response graph. At eah of these orners, the gradient of the graph hanges

abruptly by ±
π
4

radians/deade; it follows that the gradient will always be an integer multiple of

π
4

radians/deade.

In order to plot the phase response graph, we need to determine three things: (a) the frequenies of all

the orners, (b) the sign of the gradient hange at eah one and () the phase at low frequenies (i.e. fre-

quenies less than the �rst orner). The example response on the slide, H(jω) =
20jω(jω+12)

(jω+1)(jω+4)(jω+50)

has four linear fators: one in the numerator and three in the denominator. This means we will have a

total of eight orners (two from eah linear fator). Sine all the fators have

b
a

> 0 the signs of the

gradient hanges will be + followed by −for the numerator fator and − followed by + for the denom-

inator fators. The two orner frequenies orresponding to a fator (ajω + b) are at ω = 0.1
∣

∣

∣

b
a

∣

∣

∣

and

10
∣

∣

∣

b
a

∣

∣

∣

. So, using a supersript for the sign of the gradient hange, we get orners at 1.2+ and 120− for

the numerator fator and at 0.1−, 0.4−, 10+, 40+, 5− and 500+ from the three denominator fators.

Sorting these into asending order of ω gives orners at 0.1−, 0.4−, 1.2+, 5−, 10+, 40+, 120− and

500+.
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E1.1 Analysis of Ciruits (2018-10340) Frequeny Responses: 11 � note 2 of slide 10

To plot the phase response, we alulate the low frequeny asymptote by taking the terms with the

lowest power of jω in numerator and denominator; this gives 1.2jω whih has a phase of +π
2
= 1.57

radians. So we begin with a horizontal line at 1.57 radians until the �rst orner frequeny at ω = 0.1−

where the gradient beomes −
π
4

. The graph will ontinue with this gradient until the next orner

frequeny whih is at ω = 0.4− where the gradient will derease by another

π
4

to beome −
π
2

.

To work out the phase at the seond orner frequeny (ω = 0.4) we alulate how muh the phase has

hanged between ω = 0.1 and 0.4 by multiplying the gradient of the graph (−
π
4

radians/deade) by

the separation of these two orner frequenies in deades (log10
0.4
0.1

= 0.602 deades). This produt

gives gives a phase hange of −0.473 radians. So the phase is 1.571 radians at ω = 0.1 and dereases

by −0.473 to beome 1.098 radians at ω = 0.4.

The next orner is at ω = 1.2+ whih is log10
1.2
0.4

= 0.477 deades away from ω = 0.4. Sine the

gradient in this segment is −
π
2
= −1.571 rads/deade, the phase hange between these two frequenies

is −1.571× 0.477 = −0.749 radians. So the phase at ω = 1.2 is 1.098− 0.749 = 0.349 radians.

You ontinue like this hopping from eah orner frequeny to the next. At eah orner frequeny, you

know the new gradient (measured in radians/deade) and so you multiply this by the distane to the next

orner frequeny (measured in deades) to get the phase hange between the two orner frequenies.

As a hek, the gradient after the �nal orner frequeny should be zero and the phase should math

the phase of the high frequeny asymptote. In this example, the high frequeny asymptote is 20 (jω)−1

whih has a phase of −
π
2

. (Remember that jr has a phase of

(

π
2

)r
).
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Y
X =

R+ 1

jωC

3R+R+ 1

jωC

= jωRC+1
4jωRC+1

Corner freqs:

0.25
RC

−
, 1
RC

+

LF Asymptote: H(jω) = 1

Magnitude Response:

Gradient Changes: −20 dB/de at ω = 0.25
RC and +20 at ω = 1

RC

Line equations: H(jω) = (a) 1, (b)

1
4jωRC , ()

jωRC
4jωRC = 0.25

Phase Response:

LF asymptote: φ = ∠1 = 0

Gradient hanges of ±π
4 /deade at: ω = 0.025

RC

−
, 0.1
RC

+
, 2.5
RC

+
, 10
RC

−

.

At ω = 0.1
RC , φ = 0− π

4 log10
0.1

0.025 = −π
4 × 0.602 = −0.15π
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E1.1 Analysis of Ciruits (2018-10340) Frequeny Responses: 11 � 12 / 12

• Frequeny response: magnitude and phase of

Y
X as a funtion of ω

◦ Only applies to sine waves

◦ Use log axes for frequeny and gain but linear for phase

⊲ Deibels = 20 log10
V2

V1

= 10 log10
P2

P1

• Linear fator (ajω + b) gives orner frequeny at ω =
∣

∣

b
a

∣

∣

.

◦ Magnitude plot gradient hanges by ±20 dB/deade@ω =
∣

∣

b
a

∣

∣

.

◦ Phase gradient hanges in two plaes by:

⊲ ±π
4 rad/deade@ω = 0.1×

∣

∣

b
a

∣

∣

⊲ ∓π
4 rad/deade@ω = 10×

∣

∣

b
a

∣

∣

• LF/HF asymptotes: keep only the terms with the lowest/highest power

of jω in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.
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A quadrati fator in a transfer funtion is: F (jω) = a (jω)2 + b (jω) + c.

Case 1: If b2 ≥ 4ac then we an fatorize it:

F (jω) = a(jω − p1)(jω − p2)

where pi =
−b±

√
b2−4ac
2a .

0.1/RC 0.3/RC 1/RC 3/RC

-40

-20

0

ω

Y
X (jω) = 1

6R2C2(jω)2+7RCjω+1

= 1
(6jωRC+1)(jωRC+1)

ωc =
0.17
RC , 1

RC = |p1| , |p2|

Case 2: If b2 < 4ac, we annot fatorize with real oe�ients so we leave it

as a quadrati. Sometimes alled a quadrati resonane.

Any polynomial with real oe�ients an be fatored into linear and

quadrati fators ⇒ a quadrati fator is as ompliated as it gets.



[Derivation of Transfer Funtion℄

E1.1 Analysis of Ciruits (2017-10213) Resonane: 12 � note 1 of slide 2

KCL at V gives

V −X
2R

+ jωCV + V −Y
3R

= 0 ⇒ 3 (V −X) + 6jωRCV + 2 (V − Y ) = 0

⇒ (5 + 6jωRC)V = 3X + 2Y .

KCL at Y gives

Y −V
3R

+ jωCY = 0 ⇒ (1 + 3jωRC)Y = V .

Eliminating V beween these two equations gives

(5 + 6jωRC) (1 + 3jωRC)Y = 3X + 2Y

⇒

(

5 + 21jωRC + 18 (jωRC)2 − 2
)

Y = 3X

⇒
Y
X

= 3
3+21jωRC+18(jωRC)2

= 1
1+7jωRC+6(jωRC)2

= 1
(1+6jωRC)(1+jωRC)

.

At high frequenies, the impedane of the apaitor is muh less than 3R so we an think of the iruit

as two potential dividers one after the other (i.e. the urrent through the 3R is negligible ompared

to the urrent throught the �rst C). The high frequeny asymptote is therefore the produt of the

asymptotes for the two potential dividers whih gives

Y
X

≈
1

2jωRC
×

1
3jωRC

= 1
6(jωRC)2

.
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Suppose b2 < 4ac in F (jω) = a (jω)2 + b (jω) + c.

Low/High freq asymptotes: FLF(jω) = c, FHF(jω) = a (jω)2

The asymptote magnitudes ross at the orner frequeny :

∣

∣

∣
a (jωc)

2
∣

∣

∣
= |c| ⇒ ωc =

√

c
a .

We de�ne the damping fator , �zeta�, to be ζ = b
2aωc

= bωc

2c = b sgn(a)√
4ac

⇒ F (jω) = c

(

(

j ω
ωc

)2

+ 2ζ
(

j ω
ωc

)

+ 1

)

Properties to notie in this expression:

(a) c is just an overall sale fator.

(b) ωc just sales the frequeny axis sine F (jω) is a funtion of

ω
ωc

.

() The shape of the F (jω) graphs is determined entirely by ζ.

(d) The quadrati annot be fatorized ⇔ b2 < 4ac ⇔ |ζ| < 1.

(e) At ω = ωc, asymptote gain = c but F (jω) = c× 2jζ.

Alternatively, we sometimes use the quality fator , Q ≈ 1
2ζ = aωc

b .
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Y
I = 1

1

R
+ 1

jωL
+jωC

= jωL
LC(jω)2+L

R
jω+1

ωc =
√

c
a = 1000, ζ = b

2aωc
= 0.083

Asymptotes: jωL and

1
jωC .

Power absorbed by resistor ∝ Y 2

. It peaks quite

sharply at ω = 1000. The resonant frequeny, ωr,

is when the impedane is purely real:

at ωr = 1000, ZRLC = Y
I = R.

A system with a strong peak in power absorption

is a resonant system.
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ω = 1000 ⇒ ZL = 100j, ZC = −100j.

ZL = −ZC ⇒ IL = −IC
⇒ I = IR + IL + IC = IR = 1
⇒ Y = IRR = 600∠0◦ = 56dBV
⇒ IL = Y

ZL
= 600

100j = −6j

Large urrents in L and C exatly anel out ⇒ IR = I and Z = R (real)
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ω = 2000 ⇒ ZL = 200j, ZC = −50j

Z =
(

1
R + 1

ZL
+ 1

ZC

)−1

= 66∠− 84◦

Y = I × Z = 66∠− 84◦ = 36dBV
IR = Y

R = 0.11∠− 84◦

IL = Y
ZL

= 0.33∠− 174◦, IC = 1.33∠+ 6◦

Most urrent now �ows through C, only 0.11 through R.
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Y
I = 1

1/R+j(ωC−1/ωL)

Bandwidth is the range of frequenies for

whih

∣

∣

Y
I

∣

∣

2

is greater than half its peak.

Also alled half-power bandwidth or 3dB

bandwidth.

∣

∣

Y
I

∣

∣

2
= 1

(1/R)2+(ωC−1/ωL)2

Peak is

∣

∣

Y
I (ω0)

∣

∣

2
= R2

� ω0 = 1000

At ω3dB:

∣

∣

Y
I (ω3dB)

∣

∣

2
= 1

2

∣

∣

Y
I (ω0)

∣

∣

2

1
(1/R)2+(ω3dBC−1/ω

3dB
L)2

= R2

2 ⇒ 1 +
(

ω3dBRC − R
ω3dBL

)2

= 2

ω3dBRC − R/ω3dBL = ±1 ⇒ ω2
3dBRLC ± ω3dBL−R = 0

Positive roots: ω3dB = ±L+
√
L2+4R2LC
2RLC = {920, 1086} rad/s

Bandwidth: B = 1086− 920 = 167 rad/s.

Q fator ≈ ω0

B = 1
2ζ = 6. (Q = �Quality�)



Power and Energy at Resonane +

12: Resonane

Quadrati Fators +

Damping Fator and

Q
Parallel RLC

Behaviour at

Resonane

Away from resonane

Bandwidth and Q

⊲

Power and Energy

at Resonane +

Low Pass Filter

Resonane Peak for

LP �lter

Summary

E1.1 Analysis of Ciruits (2017-10213) Resonane: 12 � 8 / 11

Absorbed Power =v(t)i(t):

PL and PC opposite and ≫ PR.

Stored Energy =

1
2Li

2
L + 1

2Cy2:

sloshes between L and C.

Q , ω ×W

stored

÷ PR

= ω × 1
2C |IR|2 ÷ 1

2 |I|
2
R= ωRC �ω = 1000: Y = 600,

IR = 1, IL = −6j, IC = +6j

Q , ω× peak stored energy ÷ average power loss.



[Derivation of Power and Energy Waveforms℄

E1.1 Analysis of Ciruits (2017-10213) Resonane: 12 � note 1 of slide 8

The input urrent is a phasor I = 1 (i.e. i(t) = cosωt where ω = 1000 rad/s).

The omplex impedanes are ZL = jωL = 100jΩ and ZC = 1
jωC

= −100jΩ. Using the formula for

parallel impedanes, the total impedane satis�es

1
Z

= 1
600

+ 1
100j

+ 1
−100j

= 1
600

. So, at the resonant

frequeny, the impedanes of L and C anel out and the total impedane is just Z = 600Ω.

The voltage phasor aross the three passive omponents is V = IZ = 1× 600 = 600V. The waveform

orresponding to this phasor is v(t) = 600 cosωt and is plotted in the upper right graph. From knowing

V , we an use Ohm's law to work out the individual urrent phasors in the three omponents as

IR = V
R

= 600
600

= 1, IC = V
ZC

= 600
−100j

= 6j and IL = V
ZL

= 600
100j

= −6j. The waveforms

orresponding to these three phasors are plotted in the upper left graph.

Multiplying phasors together doesn't diretly give the orret result and so we alulate the power

waveforms diretly by multiplying v(t) × i(t). For the resistor, V = 600 and IR = 1, so pR(t) =
600 cosωt× cosωt = 600 cos2 ωt = 300 + 300 cos 2ωt. For the indutor, V = 600 and IL = −6j, so

pR(t) = 600 cosωt × 6 sinωt = 3600 sinωt cosωt = 1800 sin 2ωt. Finally, for the apaitor, V = 600

and IL = +6j, so pR(t) = 600 cosωt × −6 sinωt = −3600 sinωt cosωt = −1800 sin 2ωt. These are

plotted in the lower left graph.

The energy stored in an indutor is wL(t) = 1
2
Li2(t) = 1

2
× 0.1 × 36 sin2 ωt = 1.8 sin2 ωt =

0.9 (1− cos 2ωt). The energy stored in a apaitor is wC(t) = 1
2
Cv2(t) = 1

2
× 10−5

× 6002 cos2 ωt =

1.8 cos2 ωt = 0.9 (1 + cos 2ωt). These are plotted in the lower right graph. The total stored energy in

the iruit is wL(t) + wC(t) = 1.8 J whih does not vary with time.
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Y
X =

1/jωC

R+jωL+ 1

jωC

= 1
LC(jω)2+RCjω+1

Asymptotes: 1 and

1
LC (jω)

−2

.

ωc =
√

c
a = 1000, ζ = b

2aωc
= R

200

�ωc : ZL = −ZC = 100j, I = X
R ,

∣

∣

Y
X

∣

∣ = 1
RCω = 1

2ζ , ∠
Y
X = −π

2

Magntitude Plot:

Small ζ ⇒ less loss, higher peak, smaller bandwidth.

Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Small ζ ⇒ fast phase hange: π over 2ζ deades.

∠ Y
X ≈ −π

2

(

1 + 1
ζ log10

ω
ωc

)

for 10−ζ < ω
ωc

< 10+ζ

C

R

L

100 1k 10k
-40

-20

0

20 R=20, ζ=0.1
R=5, ζ=0.03

R=60, ζ=0.3
R=120, ζ=0.6

ω (rad/s)
100 251 1k 3.98k 10k
-1

-0.5

0

R=20, ζ=0.1
R=5, ζ=0.03

R=60, ζ=0.3
R=120, ζ=0.6

ω (rad/s)

π
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Y
X = 1

LC(jω)2+RCjω+1
= 1

(j ω
ωc
)2+2ζj ω

ωc
+1

ωc =
√

c
a = 1000, ζ = b

2aωc
= bωc

2c = R
200

Y
X is a funtion of

ω
ωc

so ωc just sales frequeny axis (= shift on log axis).

The damping fator , ζ, (�zeta�) determines the shape of the peak.

Peak frequeny:

ωp = ωc

√

1− 2ζ2

ζ ≥ 0.5 ⇒ passes under orner,

ζ ≥ 0.71 ⇒ no peak,

ζ ≥ 1 ⇒ an fatorize 0.7 0.8 0.9 1 1.2 1.4
-10

0

10

20

30

R=20, ζ=0.1990, 14dB
R=5, ζ=0.03999, 26dB

R=60, ζ=0.3906, 5dB
R=120, ζ=0.6529, 4dB

ω (krad/s)

Gain relative to asymptote: � ωp:

1

2ζ
√

1−ζ2

� ωc:

1
2ζ ≈ Q

Three frequenies: ωp= peak, ωc= asymptotes ross, ωr= real impedane

For ζ < 0.3, ωp ≈ ωc ≈ ωr. All get alled the resonant frequeny.

The exat relationship between ωp, ωc and ωr and the gain at these

frequenies is a�eted by any other orner frequenies in the response.
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• Resonane is a peak in energy absorption

◦ Parallel or series iruit has a real impedane at ωr

⊲ peak response may be at a slightly di�erent frequeny

◦ The quality fator, Q, of the resonane is

Q ,
ω0×stored energy

power in R
≈ ω0

3 dB bandwidth

≈ 1
2ζ

◦ 3 dB bandwidth is where power falls by

1
2 or voltage by

1√
2

◦ The stored energy sloshes between L and C

• Quadrati fator:

(

jω
ωc

)2

+ 2ζ
(

jω
ωc

)

+ 1

◦ a (jω)2 + b (jω) + c ⇒ ωc =
√

c
a and ζ = b

2aωc
= b sgn(a)√

4ac

◦ ±40 dB/deade slope hange in magnitude response

◦ phase hanges rapidly by 180◦ over ω = 10∓ζωc

◦ Gain error in asymptote is

1
2ζ ≈ Q at ω0

For further details see Hayt Ch 16 or Irwin Ch 12.
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A �lter is a iruit whose gain varies with frequeny. Often a �lter aims to

allow some frequenies to pass while bloking others.

� Radio/TV: a �tuning� �lter bloks all frequenies

exept the wanted hannel

� Loudspeaker: �rossover� �lters send the right

frequenies to di�erent drive units

� Sampling: an �anti-aliasing �lter� eliminates all

frequenies above half the sampling rate

� Phones: Sample rate = 8 kHz : �lter

eliminates frequenies above 3.4 kHz.

� Computer ables: �lter eliminates interferene

[Wikipedia℄
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Y
X =

1/jωC

R+1/jωC
= 1

jωRC+1 =
1

jω
p
+1

Corner frequeny: p =
∣

∣

b
a

∣

∣ = 1
RC

Asymptotes: 1 and

p
jω

Very low ω: Capaitor = open iruit

Very high ω: Capaitor short iruit

0.1p p 10p
-30

-20

-10

0

ω (rad/s)

|G
ai

n|
 (

dB
)

A low-pass �lter beause it allows low frequenies to pass but attenuates

(makes smaller) high frequenies.

The order of a �lter: highest power of jω in the denominator.

Almost always equals the total number of L and/or C.
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Y
X = R+1/jωC

4R+1/jωC
= jωRC+1

jω4RC+1 =
jω
q
+1

jω
p
+1

Corner frequenies: p = 1
4RC , q = 1

RC

Asymptotes: 1 and

1
4

Very low ω:

Capaitor = open iruit

Resistor R unattahed. Gain = 1

Very high ω:

Capaitor short iruit

0.1q p q 10q

-10

-5

0

ω

Ciruit is potential divider with gain 20 log10
1
4 = −12 dB.
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Inverting ampli�er so

Y
X = −

3R||(R+1/jωC)
R = −

3R(R+1/jωC)
R×(3R+R+1/jωC)

= −3× R+1/jωC

4R+1/jωC
= −3× jωRC+1

jω4RC+1

Same transfer funtion as before exept ×− 3 = +9.5 dB.

Advantages of op-amp ruit:

1. Can have gain > 1.

2. Low output impedane - loading

does not a�et �lter

3. Resistive input impedane - does

not vary with frequeny

0.1q p q 10q

0

5

10

ω
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Y
X = −

1/jωC

R = −
1

jωRC

Capaitor: i = C dvC
dt

i = x
R = −C dy

dt

dy
dt = −1

RCx
∫ t

0
dy
dt dt =

−1
RC

∫ t

0
xdt

y(t) = −1
RC

∫ t

0
xdt+ y(0)

0.1 1 10
-20

0

20

ω RC

Note: if x(t) = cosωt
∫

cos(ωt)dt = 1
ω sin(ωt) ⇒ gain ∝

1
ω .

We an limit the LF gain to 20 dB:

Y
X = −

10R||1/jωC

R = −
10R×1/jωC

R(10R+1/jωC)

= −
10

jω10RC+1

(

ωc =
0.1
RC

)
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Y
X = R

R+1/jωC
= jωRC

jωRC+1

Corner Freq: p = 1
RC

Asymptotes: jωRC and 1

Very low ω: C open iruit: gain = 0

Very high ω: C short iruit: gain = 1

We an add an op-amp to give a

low-impedane output. Or add gain:

Z
X =

(

1 + RB

RA

)

×
jωRC

jωRC+1

0.1p p 10p

-30

-20

-10

0

ω
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Y
X = R2+jωL

1/jωC+R1+R2+jωL

= LC(jω)2+R2Cjω

LC(jω)2+(R1+R2)Cjω+1

= jωC(jωL+R2)

LC(jω)2+(R1+R2)Cjω+1

Asymptotes: jωR2C and 1

Corner frequenies:

+20 dB/de at p = R2

L = 100 rad/s
−40 dB/de at

q =
√

c
a = 1√

LC
= 1000 rad/s

100 1k 10k

-40

-20

0

p q

ω

Damping fator: ζ = b sgn(a)√
4ac

= qb
2c = q

2 (R1 +R2)C = 0.6.

Gain error at q is

1
2ζ = Q = 0.83 = −1.6 dB (+0.04 dB due to p)

Compare with 1st order:

2nd order �lter attenuates more rapidly than a 1st order �lter.
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100 1k 10k

-40

-20

0

ω

Asymptotes:

(

jω
p

)2

and 1

KCL � Y :

Y−X
1/jωC

+ Y−Z
1/jωC

+ Y−Z
R = 0 [assume V+ = V− = Z℄

⇒ Y (1 + 2jωRC)− Z (1 + jωRC) = XjωRC

KCL � V+:

Z
mR + Z−Y

1/jωC
= 0 ⇒ Z(1 + jωmRC) = Y jωmRC

Sub Y : Z (1+jωmRC)
jωmRC (1 + 2jωRC)− Z (1 + jωRC) = XjωRC

⇒
Z
X = m(jωRC)2

m(jωRC)2+2jωRC+1
= (jω/p)2

(jω/p)2+2ζ(jω/p)+1

Corner freq: p = 1√
mRC

= 996 rad/s, ζ = 1
2Q = pRC = 1√

m
= 0.6

Sallen-Key: 2nd order �lter without indutors. Can easily have gain >1.

Designing: Choose m = ζ−2

; C any onvenient value; R = ζ
pC .
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After muh algebra:

Z
X =

(1+m)((2jωRC)2+1)
(2jωRC)2+4(1−m)jωRC+1

=
(1+m)((jω/p)2+1)
(jω/p)2+2ζ(jω/p)+1

p = 1
2RC = 314, ζ = 1−m = 0.1

Very low ω: C open iruit

Non-inverting amp,

Z
X = 1 +m

Very high ω: C short iruit

Non-inverting amp,

Z
X = 1 +m 200 300 500

-40

-20

0
 m+1 = 5.6dB 2ζp

ω (rad/s)

At ω = p,

(

jω
p

)2

= −1: numerator = zero resulting in in�nite attenuation.

The 3 dB noth width is approximately 2ζp = 2(1−m)p.

Used to remove one spei� frequeny (e.g. mains hum � 50 Hz)

Do not try to memorize this iruit
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A dimensionless gain,

VY

VX

, an always be written using dimensionless

impedane ratio terms:

ZR

ZC
= jωRC, ZL

ZR
= jωL

R ,

ZL

ZC
= −ω2LC.

Impedane saling:

Sale all impedanes by k:

R′ = kR, C ′ = k−1C, L′ = kL

Impedane ratios are unhanged

so graph stays the same.

(k is arbitrary)

Frequeny Shift:

Sale reative omponents by k:

R′ = R, C ′ = kC, L′ = kL
⇒ Z ′(k−1ω) ≡ Z(ω)

Graph shifts left by a fator of k.

10 100 1k 10k

-30

-20

-10

0

ω rad/s

♠♥

k = 20

k = 5

Must sale all reative omponents in the iruit by the same fator.
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Change LR iruit to RC:

Change R′ = kL, C ′ = 1
kR

⇒
ZR′

ZC′

= jωR′C ′ = jωL
R = ZL

ZR

Impedane ratios are unhanged

at all ω so graph stays the same.

(k is arbitrary)

Re�et frequeny axis around ωm:

Change R′ = k
ωmC , C ′ = 1

ωmkR

⇒
ZR′

ZC′

(

ω2

m

ω

)

=
(

ZC

ZR
(ω)

)∗

(a) Magnitude graph �ips

1k 10k 100k 1M

-30

-20

-10

0

ω rad/s

♦♣

k = 106

k = 0.1, ωm = 20 k

(b) Phase graph �ips and negates sine ∠z∗ = −∠z.

(k is arbitrary)
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• The order of a �lter is the highest power of jω in the transfer funtion

denominator.

• Ative �lters use op-amps and usually avoid the need for indutors.

◦ Sallen-Key design for high-pass and low-pass.

◦ Twin-T design for noth �lter: gain = 0 at noth.

• For �lters using R and C only:

◦ Sale R and C: Substituting R′ = kR and C ′ = pC sales

frequeny by (pk)
−1

.

◦ Interhange R and C: Substituting R′ = k
ω0C

and C ′ = 1
kω0R

�ips the frequeny response around ω0 (∀k).

Changes a low-pass �lter to high pass and vie-versa.

For further details see Hayt Ch 16 or Irwin Ch 12.
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Intantaneous Power dissipated in R: p(t) = v2(t)
R

Average Power dissipated in R:

P = 1
T

∫ T

0
p(t)dt= 1

R
× 1

T

∫ T

0
v2(t)dt=

〈v2(t)〉
R〈

v2(t)
〉

is the value of v2(t) averaged over time

We de�ne the RMS Voltage (Root Mean Square): Vrms ,
√
〈v2(t)〉

The average power dissipated in R is P =
〈v2(t)〉

R
= (Vrms)

2

R

Vrms is the DC voltage that would ause R to dissipate the same power.

We use small letters for time-varying voltages and apital letters for

time-invariant values.
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Cosine Wave: v(t) = 5 cosωt. Amplitude is V = 5V.

Squared Voltage: v2(t) = V 2 cos2 ωt = V 2
(
1
2 + 1

2 cos 2ωt
)

Mean Square Voltage:

〈
v2
〉
= V 2

2 sine cos 2ωt averages to zero.

RMS Voltage: Vrms =
√
〈v2〉 = 1√

2
V = 3.54V= Ṽ

Note: Power engineers always use RMS voltages and urrents exlusively

and omit the �rms� subsript.

For example UK Mains voltage = 230 V rms = 325 V peak.

In this leture ourse only, a ~ overbar means ÷
√
2: thus Ṽ = 1√

2
V .
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Suppose voltage and urrent phasors are:

V = |V | ejθV ⇔ v(t) = |V | cos (ωt+ θV )

I = |I| ejθI ⇔ i(t) = |I| cos (ωt+ θI)

Power dissipated in load Z is

p(t) = v(t)i(t) = |V | |I| cos (ωt+ θV ) cos (ωt+ θI)

= |V | |I|
(
1
2 cos (2ωt+ θV + θI) +

1
2 cos (θV − θI)

)

= 1
2 |V | |I| cos (θV − θI) +

1
2 |V | |I| cos (2ωt+ θV + θI)

Average power: P = 1
2 |V | |I| cos (φ) where φ = θV − θI

=
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ cos (φ) cosφ is the power fator

φ > 0 ⇔ a lagging power fator (normal ase: Current lags Voltage)

φ < 0 ⇔ a leading power fator (rare ase: Current leads Voltage)



[Multiplying Phasors℄

E1.1 Analysis of Ciruits (2017-10213) AC Power: 14 � note 1 of slide 4

From the previous slide, if the phasor voltage and urrent are V = |V |ejθV and I = |I|ejθI , then the

orresponding waveforms are v(t) = |V | cos (ωt+ θV ) and i(t) = |I| cos (ωt+ θI ). When you multiply

these two wavefoms together you get p(t) = 1
2
|V | |I| cos (θV − θI ) +

1
2
|V | |I| cos (2ωt+ θV + θI ).

This produt ontains two omponents: a onstant, or DC, term that doesn't involve t and a seond

term that is a osine wave of frequeny 2ω.

The time-average of the seond term is zero (beause a osine wave of any non-zero frequeny goes

symmetrially positive and negative and so averages to zero) and so the average power is just equal

to the �rst term:

1
2
|V | |I| cos (θV − θI). It is easy to see that V × I∗ =|V |ejθV × |I|e−jθI =

|V | |I| ej(θV −θI ) = |V | |I| cos (θV − θI ) + j|V | |I| sin (θV − θI) and so the average power is the real

part of

1
2
V × I∗.

The seond term is a osine wave at a frequeny of 2ωand so it is possible to represent this waveform,

1
2
|V | |I| cos (2ωt+ θV + θI ), as a phasor whose value is

1
2
V × I = 1

2
|V | |I| ej(θV +θI )

.

So to sum up, if you multiply together the two sinusoidal waveforms orresponding to phasors V and I,

you get two omponents: (a) a DC omponent of value ℜ
(

1
2
V × I∗

)

and (b) a sinusoidal omponent

of twie the frequeny whih orresponds to the phasor

1
2
V × I.
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If Ṽ = 1√
2
|V | ejθV and Ĩ = 1√

2
|I| ejθI

The omplex power absorbed by Z is S , Ṽ × Ĩ∗

where * means omplex onjugate.

Ṽ × Ĩ∗ =
∣∣∣Ṽ

∣∣∣ ejθV ×
∣∣∣Ĩ
∣∣∣ e−jθI =

∣∣∣Ṽ
∣∣∣
∣∣∣Ĩ
∣∣∣ ej(θV −θI)

=
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ ejφ =

∣∣∣Ṽ
∣∣∣
∣∣∣Ĩ
∣∣∣ cosφ+ j

∣∣∣Ṽ
∣∣∣
∣∣∣Ĩ
∣∣∣ sinφ

= P + jQ

Complex Power: S , Ṽ Ĩ∗ = P + jQ measured in Volt-Amps (VA)

Apparent Power: |S| ,
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ measured in Volt-Amps (VA)

Average Power: P , ℜ (S) measured in Watts (W)

Reative Power: Q , ℑ (S) Measured in Volt-Amps Reative (VAR)

Power Fator: cosφ , cos
(
∠Ṽ − ∠Ĩ

)
= P

|S|

Mahines and transformers have apaity limits and power losses that are

independent of cosφ; their ratings are always given in apparent power.

Power Company: Costs ∝ apparent power, Revenue ∝ average power.
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For any impedane, Z, omplex power absorbed: S = Ṽ Ĩ∗ = P + jQ

Using (a) Ṽ = ĨZ (b) Ĩ × Ĩ∗ =
∣∣∣Ĩ
∣∣∣
2

we get S =
∣∣∣Ĩ
∣∣∣
2

Z =
|Ṽ |2
Z∗

Resistor: S =
∣∣∣Ĩ
∣∣∣
2

R =
|Ṽ |2
R

φ = 0

Absorbs average power, no VARs (Q = 0)

Indutor: S = j
∣∣∣Ĩ
∣∣∣
2

ωL = j
|Ṽ |2
ωL

φ = +90◦

No average power, Absorbs VARs (Q > 0)

Capaitor: S = −j
|Ĩ|2
ωC

= −j
∣∣∣Ṽ

∣∣∣
2

ωC φ = −90◦

No average power, Generates VARs (Q < 0)

VARs are generated by apaitors and absorbed by indutors

The phase, φ, of the absorbed power, S, equals the phase of Z



Tellegen's Theorem

14: Power in AC

Ciruits

Average Power

Cosine Wave RMS

Power Fator +

Complex Power

Power in R, L, C

⊲

Tellegen's

Theorem

Power Fator

Corretion

Ideal Transformer

Transformer

Appliations

Summary

E1.1 Analysis of Ciruits (2017-10213) AC Power: 14 � 7 / 11

Tellegen's Theorem: The omplex power, S, dissipated in any iruit's

omponents sums to zero.

xn = voltage at node n

Vb, Ib = voltage/urrent in branh b

(obeying passive sign onvention)

abn ,





−1 if Vb starts from node n

+1 if Vb ends at node n

0 else

e.g. branh 4 goes from 2 to 3 ⇒ a4∗ = [0, −1, 1]

Branh voltages: Vb =
∑

n abnxn (e.g. V4 = x3 − x2)

KCL � node n:

∑
b abnIb = 0 ⇒

∑
b abnI

∗
b = 0

Tellegen:

∑
b VbI

∗
b =

∑
b

∑
n abnxnI

∗
b

=
∑

n

∑
b abnI

∗
b xn=

∑
n xn

∑
b abnI

∗
b =

∑
n xn × 0

Note:

∑
b Sb = 0 ⇒

∑
b Pb = 0 and also

∑
b Qb = 0.
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Ṽ = 230. Motor modelled as 5||7j Ω.

Ĩ = Ṽ
R
+ Ṽ

ZL

= 46− j32.9A= 56.5∠− 36◦

S = Ṽ Ĩ∗ = 10.6 + j7.6 kVA= 13∠36◦ kVA

cosφ = P
|S| = cos 36◦ = 0.81

Add parallel apaitor of 300µF:

ZC = 1
jωC

= −10.6j Ω⇒ ĨC = 21.7j A

Ĩ = 46− j11.2A = 47∠− 14◦ A

SC = Ṽ Ĩ∗C = −j5 kVA

S = Ṽ Ĩ∗ = 10.6 + j2.6 kVA= 10.9∠14◦ kVA

cosφ = P
|S| = cos 14◦ = 0.97

Average power to motor, P , is 10.6 kW in both ases.∣∣∣Ĩ
∣∣∣, redued from 56.5 ց 47A (−16%) ⇒ lower losses.

E�et of C: VARs = 7.6 ց 2.6 kVAR , power fator = 0.81 ր 0.97.
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A transformer has ≥ 2 windings on the same magneti ore.

Ampère's law:

∑
NrIr = lΦ

µA

; Faraday's law:

Vr

Nr

= dΦ
dt

.

N1 : N2 +N3 shows the turns ratio between the windings.

The • indiates the voltage polarity of eah winding.

Sine Φ is the same for all windings,

V1

N1

= V2

N2

= V3

N3

.

Assume µ → ∞ ⇒ N1I1 +N2I2 +N3I3 = 0

These two equations allow you to solve iruits and also

imply that

∑
Si = 0.

Speial Case:

For a 2-winding transformer this simpli�es to

V2 = N2

N1

V1 and IL = −I2 = N1

N2

I1

Hene

V1

I1
=

(
N1

N2

)2
V2

IL
=

(
N1

N2

)2

Z

Equivalent to a re�eted impedane of

(
N1

N2

)2

Z
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Power Transmission

Suppose a power transmission able has 1Ω resistane.

100 kVA� 1 kV = 100A ⇒ Ĩ2R = 10 kW losses.

100 kVA� 100 kV = 1A ⇒ Ĩ2R = 1W losses.

Voltage Conversion

Eletroni equipment requires ≤ 20V but mains voltage is 240V ∼.

Interferene protetion

Mirophone on long able is suseptible to interferene from nearby

mains ables. An N : 1 transformer redues the mirophone voltage

by N but redues interferene by N2

.

Isolation

There is no eletrial onnetion between the windings of a transformer

so iruitry (or people) on one side will not be endangered by a failure

that results in high voltages on the other side.
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• Complex Power: S = Ṽ Ĩ∗ = P + jQ where Ṽ = Vrms =
1√
2
V .

◦ For an impedane Z: S =
∣∣∣Ĩ
∣∣∣
2

Z =
|Ṽ |2
Z∗

◦ Apparent Power: |S| =
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ used for mahine ratings.

◦ Average Power: P = ℜ (S) =
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ cosφ (in Watts)

◦ Reative Power: Q = ℑ (S) =
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ sinφ (in VARs)

◦ Power engineers always use Ṽ and Ĩ and omit the ~.

• Tellegen: In any iruit

∑
b Sb = 0 ⇒

∑
b Pb =

∑
b Qb = 0

• Power Fator Corretion: add parallel C to generate extra VARs

• Ideal Transformer: Vi ∝ Ni and

∑
NiIi = 0 (implies

∑
Si = 0)

For further details see Hayt Ch 11 or Irwin Ch 9.
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To �nd y(t):

x(t) onstant: Nodal analysis

x(t) sinusoidal: Phasors + nodal analysis

x(t) anything else: Di�erential equation

i(t) = C dy
dt =

x−y
R ⇒ RC dy

dt + y = x

General Solution: Partiular Integral + Complementary Funtion

Partiular Integral: Any solution to RC dy
dt + y = x

If x(t) is pieewise onstant or sinusoidal, we will use

nodal/phasor analysis to �nd the steady state solution for y(t).

Complementary Funtion: Solution to RC dy
dt + y = 0

Does not depend on x(t), only on the iruit.

Solution is y(t) = Ae−
t/τ

where τ = RC is the time onstant of the iruit.

The amplitude, A, is determined by the initial onditions at t = 0.
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We will onsider input signals that are sinusoidal or onstant for a partiular

time interval and then suddenly hange in amplitude, phase or frequeny.

Output is the sum of the steady state and a transient:

y(t) = ySS(t) + yTr(t)

Steady state, ySS(t), is the same frequeny as the input;

use phasors + nodal analysis.

Transient is always yTr(t) = Ae−
t

τ

at eah hange.
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For t < 0, y(t) = x(t) = 1

For t ≥ 0, RC dy
dt + y = x= 4

Time Const: τ = RC = 1ms

Steady State (Partiular Integral)

ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Funtion)

yTr(t) = Ae−
t/τ

Steady State + Transient

y(t) = ySS + yTr = 4 +Ae−
t/τ

To �nd A, use apaitor property:

Capaitor voltage never hanges abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

y
SS

y
Tr

y

y(0+) = 4 +A and y(0−) = 1⇒ 4 +A = 1⇒ A = −3

So transient: yTr(t) = −3e−t/τ

and total y(t) = 4− 3e−t/τ

Transient amplitude ⇐ apaitor voltage ontinuity: vC(0+) = vC(0−)
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Positive exponentials grow to ±∞:

et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et
3e¼t

-2e½t

t

Negative exponentials deay to 0:

2e−t, e
−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8
-2

0

2
2e-t

e-¼t

-2e-½t

t

Deay rate of e
−t/a

37% after 1 time onstant

5% after 3, <1% after 5

a 2a 3a 4a 5a
0

0.5

1

0.37

0.05 0.01

t

Gradient of e
−t/a

Gradient at t hits zero at t+ a.

True for any t.

a 2a 3a
0

0.5

1

t
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Negative exponential with a �nal

value of F .

y(t) = F + (A− F ) e−(t−TA)/τ

How long does it take to go from A to B ?

At t = TB:

y(TB) = B = F + (A− F ) e−(TB−TA)/τ

B−F
A−F = e

−(TB−TA)/τ

Hene TB − TA = τ ln
(

A−F
B−F

)

= τ ln
(

initial distane toF

�nal distane toF

)

Useful formula - worth remembering.
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We know i = x−y
R

y(t) = L di
dt =

L
R ×

d(x−y)
dt = L

R
dx
dt − L

R
dy
dt

⇒ L
R

dy
dt + y = L

R
dx
dt

Solution: Partiular Integral + Complementary Funtion

Partiular Integral: Any solution to

L
R

dy
dt + y = L

R
dx
dt

If x(t) is pieewise onstant or sinusoidal, we will use

nodal/phasor analysis to �nd the steady state solution, ySS(t).

Complementary Funtion: Solution to

L
R

dy
dt + y = 0

Does not depend on x(t), only on the iruit.

Solution is yTr(t) = Ae−
t/τ

where τ = L
R is the time onstant of the iruit.

1st order transient is always yTr(t) = Ae−
t/τ

where τ = RC or

L
R

Amplitude A ⇐ no abrupt hange in apaitor voltage or indutor urrent.
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1st order iruit has only one C or L.

Make a Thévenin equivalent of the network

onneted to the terminals of C. Remember

x is a voltage soure but y is not.

Now v(t) = vSS(t) + vTr(t)
= vSS(t) +Ae

−t/τ

Time onstant is τ = RThC

where RTh is the Thévenin resistane.

Replae the apaitor with a voltage soure

v(t); all voltages and urrents in the iruit

will remain unhanged.

Linearity: y = ax+ bv = ax+ bvSS + bvTr = ySS + bvTr

All voltages and urrents in a iruit have the same transient (but saled).

The iruit's time onstant is τ = RThC or

L
RTh

where RTh is the

Thévenin resistane of the network onneted to C or L.
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Find Steady State (DC ⇒ ZL = 0)

Potential divider: ySS = 1
2x

ySS(0−) = 1, ySS(0+) = 3

Indutor Current Continuity

iSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+
x− y = 1mA× 1 k = 1
y(0+) = x(0+)− 1 = 5

Time Constant

Set x ≡ 0 → RTh = 2k
τ = L

RTh
= 2µs

Result

y = ySS + (y (0+)− ySS (0+)) e−t/τ

= 3 + (5− 3) e−t/τ

= 3 + 2e−t/τ
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Find Steady State (DC ⇒ ZC = ∞)

KCL � V:

v−x
4R + v

8R + v−y
2R = 0

KCL � Y:

y−v
2R + y−x

6R = 0

vSS = 3
4x, ySS = 13

16x

Capaitor Voltage Continuity

vSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3

KCL � Y:

y−(−3)
2R + y−4

6R = 0

y(0+) = −9+4
4 = − 5

4

Time Constant

τ = RThC = 2RC (from earlier slide)

Result

y = ySS + (y (0+)− ySS (0+)) e−t/τ

= 13
4 +

(

− 5
4 − 13

4

)

e
−t/τ

= 13
4 − 18

4 e
−t/τ = 3 1

4 − 4 1
2e

−t/2RC

-RC 0 RC 2RC 3RC
-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC
-4

-2

0

2

4

t

y
Tr

y
SS

y
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• 1st order iruits: inlude one C or one L.

◦ vC or iL never hange abruptly. The output, y, is not neessarily

ontinuous unless it equals vC .

• Ciruit time onstant: τ = RThC or

L
RTh

◦ RTh is the Thévenin resistane seen by C or L.

◦ Same τ for all voltages and urrents.

• Output = Steady State + Transient

◦ Steady State: use nodal/Phasor analysis when input is pieewise

onstant or pieewise sinusoidal. The steady state has the same

frequeny as the input signal.

◦ Transient: Find vC(0−) or iL(0−): unhanged at t = 0+

Find y(0+) assuming soure of vC(0+) or iL(0+)

Amplitude never omplex, never depends on t.

◦ y(t) = ySS(t) + (y(0+)− ySS(0+)) e−t/τ

See Hayt Ch 8 or Irwin Ch 7.
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We will onsider input signals that are sinusoidal or onstant for a partiular

time interval and then suddenly hange in amplitude, phase or frequeny.

Output is the sum of the steady state and a transient:

y(t) = ySS(t) + yTr(t)

Steady state, ySS(t), is the same frequeny as the input;

use phasors + nodal analysis.

Transient is always yTr(t) = Ae−
t
τ

at eah hange.

[only one C or L℄
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For t < 0: y(t) = x(t) = 0

For t ≥ 0: x = 2 sinωt⇒ X = −2j
τ = RC = 1ms, ω = 10 krad/s

Steady State (for t ≥ 0)

Y
X = 1

jωRC+1 = 0.1∠− 84◦

Y = X × Y
X = −2j × 0.1∠− 84◦

ySS(t) = 0.2 cos (ωt− 174◦)

Steady State + Transient

y(t) = 0.2 cos (ωt− 174◦) +Ae−t/τ

Transient Amplitude

y(0+) = 0.2 cos (−174◦) +A
= −0.198 +A

-1 0 1 2 3
-2

0

2

t (ms)

-1 0 1 2 3
-0.2

0

0.2

0.4

t (ms)

y
SS

y
Tr

y

y

y(0+) = y(0−) = 0⇒ A = 0.198⇒ yTr(t) = 0.198e−t/τ

Complete Expression for y(t)
y(t) = 0.2 cos (ωt− 174◦) + 0.198e−t/τ
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For 0 ≤ t < 0.2π ms: X = −2j, ω1 = 10 k, τ = 1ms

prev page⇒ y(t) = 0.2 cos (ωt− 174◦) + 0.198e−t/τ

Steady State (for t ≥ 0.0002π = 0.63ms)

X = −3j, ω2 = 5k
Y
X = 1

jω2RC+1 = 0.2∠− 79◦

Y = X × Y
X = −3j × 0.2∠− 79◦

ySS(t) = 0.59 cos (ω2t− 169◦)

Steady State + Transient (for t ≥ 0.63ms)

y = 0.59 cos (ω2t− 169◦) +Be−(t−0.00063)/τ

Transient Amplitude (at t = 0.63ms)

y(0.00063+) = 0.59 cos (0.00063ω2 − 169◦) +B
= 0.577 +B

y(0.00063−) = 0.2 cos (0.00063ω1 − 174◦) + 0.198e−0.00063/τ = −0.092
⇒ 0.577 +B = −0.092 ⇒ B = −0.67⇒ yTr = −0.67e−(t−0.00063)/τ

Complete Expression for y(t) (for t ≥ 0.63ms)

y(t) = 0.59 cos (ω2t− 169◦)− 0.67e−(t−0.00063)/τ
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Operating the swith hanges τ :

Closed: τC = (1 k || 9 k)× C = 0.9ms

Open: τO = 9k× C = 9ms

Swith losed at t = 0.

ySS = 10× 9
10 = 9V

y(t) = 9− 9e−t/τC

y(2−) = 9− 9e−2/0.9 = 8.02

Swith opened at t = 2.

ySS = 0V
y(t) = 0 +Ae−(t−2)/τO

y(2+) = A = y(2−) = 8.02
y(20) = 8.02e−(20−2)/9 = 1.09



Transfer Funtion
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Phasor nodal analysis:

Y
X = 5R

15R+ 10R
1+10jωRC

= 10jωRC+1
30jωRC+5 = 0.2

jω
p
+1

jω
q
+1

Corner freqenies: p = 1
10RC , q = 1

6RC , HF gain =

1
3

Thévenin Equivalent driving C:

VTh = 2
5X, RTh = 10R||15R = 6R, τ = 6RC

V = 2
5X × 1

6jωRC+1 =
2
5X × 1

jωτ+1

Denominator is always (jωτ + 1)

Linearity: Y = aX + bV

KCL � supernode:

(Y+V )−X
10R + Y

5R = 0⇒ 3Y + V −X = 0

Y = 1
3X − 1

3V = 1
3X − 2

15X
(

1
jωτ+1

)

= X
15

(

5jωτ+3
jωτ+1

)

Denominator of bV is unhanged by adding aX

(1) Denominator orner frequeny is always

1
τ for any transfer funtion in the iruit.

(2) V = 0 at ω = ∞, so sine Y = aX + bV , a = Y
X

∣

∣

ω=∞

(= HF-gain)

V is never disontinuous so ∆Y disontinuity = HF-gain×∆X disontinuity
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Calulate Transfer Funtion

KCL � V:

V−X
4R + V

8R + jωCV + V−Y
2R = 0

KCL � Y:

Y−V
2R + Y−X

6R = 0

→ Transfer Funtion:

Y
X = 8jωRC+13

32jωRC+16

DC gain:

13
16 , HF gain:

8
32 = 1

4 , τ = 32RC
16 = 2RC

Steady State

t < 0: ySS(t) =
13
16x(t) =

13
16 ×−4 = −3 1

4
t ≥ 0: ySS(t) =

13
16x(t) =

13
16 ×+4 = +3 1

4

Steady State + Transient (for t > 0)

t ≥ 0: y = 3 1
4 +Ae−t/τ

Disontinuity Gain (= HF Gain � ω = ∞)

∆y = y(0+)− y(0−) = 1
4∆x = 1

4 × 8 = 2
(

3 1
4 +A

)

−
(

−3 1
4

)

= 2⇒ A = −4 1
2

Complete Expression

t ≥ 0: y(t) = 3 1
4 − 4 1

2e
−t/2RC



Opamp Ciruit Transient

E1.1 Analysis of Ciruits (2018-10340) Transients (B): 16 � 8 / 9

Calulate Transfer Funtion (Inverting Ampli�er)

Y
X = −ZF

R = − 1
R ×

4R(4R+ 1
jωC )

4R+(4R+ 1
jωC )

= −4 4jωRC+1
8jωRC+1

DC gain: −4, HF gain: −2, τ = 8RC

Steady State

t < 0: ySS(t) = −4v(t) = 0
t ≥ 0: ySS(t) = −4v(t) = −4× 1 = −4

Steady State + Transient

t ≥ 0: y = −4 +Ae−t/τ

Disontinuity Gain (= HF Gain)

y(0+)− y(0−) = −2 (x(0+)− x(0−)) = −2
(−4 +A)− (0) = −2⇒ A = 2

Complete Expression

t ≥ 0: y(t) = −4 + 2e−t/8RC

0 5RC 10RC 15RC 20RC

0

0.5

1

t

0 5RC 10RC 15RC 20RC
-4

-2

0

2

t

y
Tr

y
SS

y

For opamp iruits get τ from the transfer funtion beause RTh is di�ult to work out.
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• 1st order transients: iruits with only one C or L

• Transients arise from abrupt hanges in the frequeny, phase or

amplitude of the input signal or else a swith hanging

• Output is steady state + transient

• Steady state: nodal analysis → transfer funtion

• Transient: Ae−t/τ

where:

◦ Two methods to �nd τ :

⊲ Thévenin seen by L or C: τ = RThC or

L
RTh

⊲ Transfer funtion denominator: (ajω + b) ⇒ τ = 1
ωc

= a
b

◦ Two methods to �nd A:

⊲ Continuity: ∆VC = 0 or ∆IL = 0

⊲ Disontinuity gain: ∆output = HF gain ×∆input

For further details see Hayt Ch 8 or Irwin Ch 7.
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Previously assume that any hange in v0(t) appears instantly at vL(t).

This is not true.

If fat signals travel at around half the speed of light (c = 30 m/ns).

Reason: all wires have apaitane to ground and to neighbouring

ondutors and also self-indutane. It takes time to hange the urrent

through an indutor or voltage aross a apaitor.

A transmission line is a wire with a uniform goemetry along its length: the

apaitane and indutane of any segment is proportional to its length.

We represent as a large number of small indutors and apaitors spaed

along the line.

The signal speed along a transmisison line is preditable.
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A short setion of line δx long:

v(x, t) and i(x, t) depend on both

position and time.

Small δx ⇒ ignore 2nd order derivatives:

∂v(x,t)
∂t

= ∂v(x+δx,t)
∂t

, ∂v
∂t

.

Basi Equations

KVL: v(x, t) = V2 + v(x+ δx, t) + V1

KCL: i(x, t) = iC + i(x+ δx, t)

Capaitor equation: C ∂v
∂t

= iC = i(x, t)− i(x+ δx, t) = − ∂i
∂x

δx

Indutor equation (L1 and L2 have the same urrent):

(L1 + L2)
∂i
∂t

= V1 + V2 = v(x, t)− v(x+ δx, t) = − ∂v
∂x

δx

Transmission Line Equations

C0
∂v
∂t

= − ∂i
∂x

L0
∂i
∂t

= − ∂v
∂x

where C0 = C
δx

is the apaitane per unit length

(Farads/m) and L0 = L1+L2

δx

is the total

indutane per unit length (Henries/m).
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When we di�erentiate a funtion of two variables, we keep one of the variables �xed while di�erentiating

with respet to the other; this is alled a partial derivative and is written with a urly version of the

letter �d�. Thus

∂v

∂x
, lim

δx→0

v(x+ δx, t)− v(x, t)

δx
and

∂v

∂t
, lim

δt→0

v(x, t+ δt)− v(x, t)

δt
.

Higher order derivatives may be obtained by di�erentiating the partial derivatives again to give

∂2v

∂x2
,

∂

∂x

(

∂v

∂x

)

,
∂2v

∂t2
,

∂

∂t

(

∂v

∂t

)

and
∂2v

∂x∂t
,

∂

∂x

(

∂v

∂t

)

.

Provided the seond order partial derivatives are ontinuous, the order of di�erentiation doesn't matter

so that

∂2v
∂x∂t

= ∂2v
∂t∂x

.

If we take the normal Taylor series with respet to x, v(x + δx, t) = v(x, t) +
∂v(x,t)

∂x
δx + O

(

δx2
)

,

and di�erentiate eah term with respet to t, we get

∂v(x+ δx, t)

∂t
=

∂v(x, t)

∂t
+

∂2v(x, t)

∂t∂x
δx+O

(

δx2
)

.

If δx → 0, then we get

∂v(x+δx, t)
∂t

→
∂v(x,t)

∂t

as assumed on the previous slide.
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This note provides slightly more detail about how we derive the transmission line equations. By ex-

panding v(x+ δx, t) and i(x+ δx, t) as Taylor Series in x, we an write

v(x+ δx, t) = v(x, t) + δx
∂v

∂x
(x, t) +O(δx2) and i(x+ δx, t) = i(x, t) + δx

∂i

∂x
(x, t) +O(δx2).

From the diagram on the previous page, the voltage aross the apaitor is v(x + δx, t) and so the

apaitor equation is

C
∂v

∂t
(x+ δx, t) = i(x, t)− i(x+ δx, t).

Substituting in the Taylor series expansions for v(x + δx, t) and i(x + δx, t) and also substituting

C = C0δx results in

C0δx

(

∂v

∂t
(x, t) + δx

∂2v

∂x∂t
(x, t) + O(δx2)

)

= −δx
∂i

∂x
(x, t)−O(δx2)

⇒ C0

(

∂v

∂t
(x, t) + δx

∂2v

∂x∂t
(x, t) + O(δx2)

)

= −
∂i

∂x
(x, t)−O(δx).

Finally, we let δx → 0 and so all the terms that are O(δx) or smaller disappear whih leaves

C0
∂v

∂t
(x, t) = −

∂i

∂x
(x, t).

The indutor equation, L0
∂i
∂t

= −
∂v
∂x

, an be derived in a similar way.
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Transmission Line Equations: C0
∂v
∂t

= − ∂i
∂x

L0
∂i
∂t

= − ∂v
∂x

General solution: v(t, x) = f(t− x
u
) + g(t+ x

u
)

i(t, x) =
f(t− x

u
)−g(t+ x

u
)

Z0

where u =
√

1
L0C0

and Z0 =
√

L0

C0

.

u is the propagation veloity and Z0 is the harateristi impedane.

f() and g() an be any di�erentiable funtions.

Verify by substitution:

− ∂i
∂x

= −
(

−f ′(t− x

u
)−g′(t+ x

u
)

Z0

× 1
u

)

= C0

(

f ′(t− x
u
) + g′(t+ x

u
)
)

= C0
∂v
∂t
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Suppose:

u = 15 cm/ns

and g(t) ≡ 0
⇒ v(x, t) = f

(

t− x
u

)

• At x = 0 m [N℄,

vS(t) = f(t− 0
u
)

• At x = 45 m [N℄,

v(45, t) = f(t− 45
u
)

0 2 4 6 8 10
Time (ns)

f(t-0/u) f(t-45/u) f(t-90/u)

f(t− 45
u
) is exatly the same as f(t) but delayed by

45
u

= 3 ns.

• At x = 90 m [N℄, vR(t) = f(t− 90
u
); now delayed by 6 ns.

Waveform at x = 0 ompletely determines the waveform everywhere else.

Snapshot at t0 = 4ns:

the waveform has just

arrived at the point

x = ut0 = 60 m. 0 20 40 60 80
Position (cm)

f(4-x/u)t = 4 ns

f(t− x
u
) is a wave travelling forward (i.e. towards +x) along the line.



Forward + Bakward Waves

17: Transmission

Lines

Transmission Lines

Transmission Line

Equations +

Solution to

Transmission Line

Equations

Forward Wave

⊲

Forward +

Bakward Waves

Power Flow

Re�etions

Re�etion

Coe�ients

Driving a line

Multiple Re�etions

Transmission Line

Charateristis +

Summary

E1.1 Analysis of Ciruits (2017-10213) Transmission Lines: 17 � 6 / 13

Similarly g(t+ x
u
) is a wave travelling bakwards, i.e. in the −x diretion.

v(x, t) =
f(t− x

u
) + g(t+ x

u
)

At x = 0 m [N℄,

vS(t) = f(t) + g(t)

At x = 45 m [N℄, g is only 1 ns behind f and they add together.

At x = 90 m [N℄, g starts at t = 1 and f starts at t = 6.

A vertial line on the diagram

gives a snapshot of the entire

line at a time instant t.

f and g �rst meet at t = 3.5

and x = 52.5.

Magially, f and g pass

through eah other entirely

unaltered.
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De�ne fx(t) = f
(

t− x
u

)

and gx(t) = g
(

t+ x
u

)

to be the forward and

bakward waveforms at any point, x.

i is always

measured in the

+ve x diretion.

Then vx(t) = fx(t) + gx(t) and ix(t) = Z−1
0 (fx(t)− gx(t)).

Note: Knowing the waveform fx(t) or gx(t) at any position x, tells you it at

all other positions: fy(t) = fx
(

t− y−x
u

)

and gy(t) = gx
(

t+ y−x
u

)

.

Power Flow

The power transferred into the shaded region aross the boundary at x is

Px(t) = vx(t)ix(t) = Z−1
0 (fx(t) + gx(t)) (fx(t)− gx(t))

=
f2

x
(t)

Z0

−
g2

x
(t)

Z0

fx arries power into shaded area and gx arries power out independently.

Power travels in the same diretion as the wave.

The same power as would be absorbed by a [�tiious℄ resistor of value Z0.
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vx = fx + gx
ix = Z−1

0 (fx − gx)

From Ohm's law at x = L, we have vL(t) = iL(t)RL

Hene (fL(t) + gL(t)) = Z−1
0 (fL(t)− gL(t))RL

From this: gL (t) = RL−Z0

RL+Z0

× fL (t)

We de�ne the re�etion oe�ient: ρL = gL(t)
fL(t) =

RL−Z0

RL+Z0

= +0.5

Substituting gL (t) = ρLfL (t) gives
vL(t) = (1 + ρL) fL(t) and iL(t) = (1− ρL)Z

−1
0 fL(t)

0 2 4 6 8 10 12 14 16 18
Time (ns)

v
0
(t)

0 2 4 6 8 10 12 14 16 18
Time (ns)

i
0
(t)

At soure end: g0(t) = ρLf0
(

t− 2L
u

)

i.e. delayed by

2L
u

= 12 ns.

Note that the re�eted urrent has been multiplied by −ρ.
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ρ = R−Z0

R+Z0

=
R

Z0
−1

R

Z0
+1

vL(t)
f(t) = 1 + ρ
iL(t)Z0

f(t) = 1− ρ 0 1 2 3 4 5
-1

0

1

RZ
0
-1

ρ

ρ depends on the ratio

R
Z0

.

R
Z0

ρ vL(t)
f(t)

iL(t)Z0

f(t) Comment

∞ +1 2 0 Open iruit: vL = 2f , iL ≡ 0
3 +0.5 1.5 0.5 R > Z0 ⇒ ρ > 0
1 0 1 1 Mathed: No re�etion at all

1
3 −0.5 0.5 1.5 R < Z0 ⇒ ρ < 0

0 −1 0 2 Short iruit: vL ≡ 0, iL = 2f
Z0

Note: Reverse mapping is R = vL
iL

= 1+ρ
1−ρ

× Z0

Remember: ρ ∈ {−1,+1} and inreases with R.
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vx = fx + gx
ix = fx−gx

Z0

From Ohm's law at x = 0, we have v0(t) = vS(t)− i0(t)RS where RS is

the Thévenin resistane of the voltage soure.

Substituting v0(t) = f0 + g0 and i0(t) =
f0−g0
Z0

leads to:

f0(t) =
Z0

RS+Z0

vS(t) +
RS−Z0

RS+Z0

g0(t), τ0vS(t) + ρ0g0(t)

So f0(t) is the superposition of two terms:

(1) Input vS(t) multiplied by τ0 = Z0

RS+Z0

whih is the same as a

potential divider if you replae the line with a [�tiious℄ resistor Z0.

(2) The inoming bakward wave, g0(t), multiplied by a re�etion

oe�ient: ρ0 = RS−Z0

RS+Z0

.

For RS = 20: τ0 = 100
20+100 = 0.83 and ρ0 = 20−100

20+100 = −0.67.
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ρ0 = − 2
3

ρL = 1
2

vx = fx + gx

Eah extra bit of f0 is

delayed by

2L
u

(=12 ns)

and multiplied by ρLρ0 :

f0(t) =
∑

∞

i=0 τ0ρ
i
Lρ

i
0vS

(

t− 2Li
u

)

gL(t) = ρLf0
(

t− L
u

)

v0(t) =
f0(t) + gL

(

t− L
u

)

vL(t) =
f0

(

t− L
u

)

+ gL(t)

0 5 10 15 20 25 30
Time (ns)

f
0
(t)

0 5 10 15 20 25 30
Time (ns)

g
L
(t)

0 5 10 15 20 25 30
Time (ns)

v
0
(t)

0 5 10 15 20 25 30
Time (ns)

v
L
(t)
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Integrated iruits & Printed iruit boards

High speed digital or high frequeny analog

interonnetions

Z0 ≈ 100Ω, u ≈ 15 m/ns.

Long Cables

Coaxial able (�oax�): una�ated by external �elds;

use for antennae and instrumentation.

Z0 = 50 or 75Ω, u ≈ 25 m/ns.

Twisted Pairs: heaper and thinner than oax and

resistant to magneti �elds; use for omputer network

and telephone abling. Z0 ≈ 100Ω, u ≈ 19 m/ns.

When do you have to bother?

Answer: long ables or high frequenies. You an ompletely ignore

transmission line e�ets if length ≪ u
frequency = wavelength.

• Audio (< 20 kHz) never matters.

• Computers (1GHz) usually matters.

• Radio/TV usually matters.
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For long oaxial or twisted pair ables, the �ground� wire has signi�ant indutane and so its two ends

are not neessarily at the same voltage. This means that vx(t), fx(t) and gx(t) are measured relative

to the �ground� at position x as shown. It follows that potential di�erenes like vR(t) = vA(t)− vB(t)

make sense but talking about vA(t) on its own is meaningless.

Integrated iruits and printed iruit boards normally have a low impedane �ground plane� overing

the entire iruit; in a multilayer printed iruit board this typially forms one entire layer. In this ase

we have a single ground referene for the whole iruit and it now makes sense to talk about the voltage

�at� a node and to say vR(t) = vA(t).
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• Signals travel at around u ≈ 1
2c = 15 m/ns.

Only matters for high frequenies or long ables.

• Forward and bakward waves travel along the line:

fx(t) = f0
(

t− x
u

)

and gx(t) = g0
(

t+ x
u

)

◦ Knowing fx and gx at any single x position tells you everything

• Voltage and urrent are: vx = fx + gx and ix = fx−gx
Z0

• Terminating line with R at x = L links the forward and bakward waves:

◦ bakward wave is gL = ρLfL where ρL = R−Z0

R+Z0

◦ the re�etion oe�ient, ρL ∈ {−1,+1} and inreases with R

◦ R = Z0 avoids re�etions: mathed termination.

◦ Re�etions go on for ever unless one or both ends are mathed.

◦ f is in�nite sum of opies of the input signal delayed suessively

by the round-trip delay,

2L
u

, and multiplied by ρLρ0.
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For a transmission line: v(t, x) = f
(

t− x
u

)

+ g
(

t+ x
u

)

and

i(t, x) = Z−1
0

(

f(t− x
u
)− g(t+ x

u
)
)

We an use phasors to eliminate t from the equations if f() and g() are

sinusoidal with the same ω: f(t) = A cos (ωt+ φ) ⇒ F = Aejφ.

Then fx(t) = f(t− x
u
) = A cos

(

ω
(

t− x
u

)

+ φ
)

⇒ Fx = Aej(−
ω
u
x+φ)= Aejφe−j ω

u
x= F0e

−jkx

where the wavenumber is k , ω
u

.

Units: ω is �radians per seond�, k is �radians per metre� (note k ∝ ω).

Similarly Gx = G0e
+jkx

.

Everything is time-invariant: phasors do not depend on t.

Nie things about sine waves:

(1) a time delay is just a phase shift

(2) sum of delayed sine waves is another sine wave



Phasor Relationships

E1.1 Analysis of Ciruits (2017-10116) Phasors and Transmission Lines: 18 � 3 / 7

Time Domain Phasor Notes

f(t) = A cos (ωt+ φ) F = Aejφ F indep of t

fx(t) = f
(

t− x
u

)

= A cos
(

ωt+ φ− ω
u
x
)

Fx = Aej(φ−
ω
u
x)

= Fe−jkx

|Fx| ≡ |F |
indep of x

fy(t) = fx

(

t− (y−x)
u

)

Fy = Fxe
−jk(y−x)

Delayed by

y−x
u

gy(t) = gx

(

t+ (y−x)
u

)

Gy = Gxe
+jk(y−x)

Advaned by

y−x
u

vx(t) = fx(t) + gx(t) Vx = Fx +Gx

ix(t) =
fx(t)−gx(t)

Z0
Ix = Fx−Gx

Z0
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Phasors obey Ohm's law:

VL

IL
= RL = FL+GL

Z
−1
0 (FL−GL)

So GL = ρLFL where ρL = RL−Z0

RL+Z0

At any x, Gx

Fx
= GLe−jk(L−x)

FLe+jk(L−x) = ρLe
−2jk(L−x)

Ohm's law at the load determines the ratio

Gx

Fx

everywhere on the line.

Note that

∣

∣

∣

Gx

Fx

∣

∣

∣
≡ |ρL| has the same value for all x.

Vx = Fx +Gx = Fx

(

1 + ρLe
−2jk(L−x)

)

Ix = Z−1
0 (Fx −Gx) = Z−1

0 Fx

(

1− ρLe
−2jk(L−x)

)

The exponent −2jk (L− x) is the phase delay from travelling from x to L

and bak again (hene the fator 2).
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Forward wave phasor: Fx = Fe−jkx

Bakward wave phasor: Gx = ρLFxe
−2jk(L−x) = ρLFe−2jkLe+jkx

Line Voltage phasor: Vx = Fx +Gx = Fe−jkx
(

1 + ρLe
−2jk(L−x)

)

Line Voltage Amplitude: |Vx| = |F |
∣

∣1 + ρLe
−2jk(L−x)

∣

∣

varies with x but not t

Max amplitude equals 1 + |ρL| at values of x where Fx and Gx are in phase. This ours

every

λ
2 away from L where λ is the wavelength, λ = 2π

k
= u

f

.

Min amplitude equals 1− |ρL| at values of x where Fx and Gx are out of phase.

Standing waves arise whenever a periodi wave meets its re�etion: e.g. ponds, musial

instruments, mirowave ovens.
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• Use phasors if forward and bakward waves are sinusoidal with the

same ω.

◦ fx(t) = f
(

t− x
u

)

→ Fx = F0e
−jkx

◦ gx(t) = g
(

t+ x
u

)

→ Gx = G0e
+jkx

⊲ k = ω
u

is the wavenumber in �radians per metre�

• Time delays ≃ phase shifts: Fy = Fxe
−jk(y−x)

• When a periodi wave meets its re�etion you get a standing wave:

◦ Osillation amplitude varies with x: ∝
∣

∣1 + ρLe
−2jk(L−x)

∣

∣

◦ Max amplitude of (1 + |ρL|) ours every

λ
2
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