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� 18 le
tures: feel free to ask questions

� Buy the textbook: Hayt, Kemmerly & Durbin �Engineering Cir
uit

Analysis� ISBN: 0071217066 (¿44) or Irwin, Nelms & Patnaik

�Engineering Cir
uit Analysis� ISBN: 1118960637 (¿37)

� Weekly study group: Problem sheets - KEEP UP TO DATE

� Fortnightly tutorial: tutorial problems

� Le
ture slides (in
luding animations) and problem sheets + answers

available via Bla
kboard or from my website:

http://www.ee.i
.a
.uk/hp/sta�/dmb/
ourses/

ts1/

ts1.htm

� Quite dense: you should understand every word

� Email me with any errors or 
onfusions in slides or problems/answers

� Christmas Test in January

� Exam in June (sample papers + solutions available via Bla
kboard)
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� A 
ir
uit 
onsists of ele
tri
al or ele
troni
 
omponents

inter
onne
ted with metal wires

� Every ele
tri
al or ele
troni
 devi
e is a 
ir
uit

Breadboard Printed Integrated

� The fun
tion of the 
ir
uit is determined by whi
h 
omponents are

used and how they are inter
onne
ted: the physi
al positioning of the


omponents usually has hardly any e�e
t.
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A 
ir
uit diagram shows the way in whi
h the 
omponents are 
onne
ted

• Ea
h 
omponent has a

spe
ial symbol

• The inter
onne
ting wires are

shown as lines

A node in a 
ir
uit is all the points that are 
onne
ted together via the

inter
onne
ting wires. One of the four nodes in the diagram is 
oloured red.

Assumption: Inter
onne
ting wires have zero resistan
e so everywhere along

a node has the same voltage.

Junction Crossover Bad Better

Indi
ate three meeting wires

with a � and 
rossovers

without one.

Avoid having four meeting wires in 
ase the � disappears; stagger the wires

instead.
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Charge is an ele
tri
al property possessed by some atomi
 parti
les

Charge is measured in Colombs (abbreviated C)

An ele
tron has a 
harge −1.6× 10−19C, a proton +1.6× 10−19C

Unlike 
harges attra
t, like 
harges repel: the for
e is fantasti
ally huge

Two people 384, 000 km apart

Ea
h with 1% extra ele
trons

For
e = 2× 108N
= 20, 000 tonne− force
= 360, 000× their weight

Consequen
e: Charge never a

umulates in a 
ondu
tor: everywhere in a


ondu
ting path stays ele
tri
ally neutral at all times.
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Current is the �ow of 
harged parti
les past a measurement boundary

Using an ammeter, we measure 
urrent in Ampères (usually abbreviated to

Amps or A): 1 A = 1 C/s

Analogy: the �ow of water in a pipe or river is measured in litres per se
ond

The arrow in a 
ir
uit diagram

indi
ates the dire
tion we 
hoose

to measure the 
urrent.

I = +1 A ⇒ 1 C of +ve 
harge

passes ea
h point every se
ond in

the dire
tion of the arrow (or else

1 C of �ve 
harge in the opposite

dire
tion)

I = −1 A ⇒ 1 C of +ve 
harge in the dire
tion opposite to the arrow

• Average ele
tron velo
ity is surprisingly slow (e.g. 1 mm/s) but (like a

water pipe) the signal travels mu
h faster.

• In metals the 
harge 
arriers (ele
trons) are a
tually �ve: in this 
ourse

you should ignore this always.
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When a ball falls from a

shelf, it loses potential

energy of mgh or,

equivalently, gh per kg.

h

The potential energy per kg of any point on a mountain range is equal to

gh where h is measured relative to an equipotential referen
e surfa
e (e.g.

the surfa
e of a lake).

The potential energy di�eren
e between any two points is the energy

needed to move 1 kg from one point to the other.

The potential energy di�eren
e does not depend on the route taken

between the points.

The potential enegy di�eren
e does not depend on your 
hoi
e of referen
e

surfa
e (e.g. lake surfa
e or sea level).
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The ele
tri
al potential di�eren
e (or voltage di�eren
e) between any two

nodes in a 
ir
uit is the energy per 
oulomb needed to move a small +ve


harge from one node to the the other.

We usually pi
k one of the nodes as a referen
e and de�ne the voltage at a

node to be the voltage di�eren
e between that node and the referen
e.

The four nodes are labelled

A, B, C, G.

We have 
hosen G as the referen
e

node; indi
ated by the �ground�

symbol.

The potential di�eren
e between A and the ground referen
e, G, is written

VA and is also 
alled �the voltage at A�.

The potential di�eren
e between A and B is written as VAB and shown as

an arrow pointing towards A. This is the energy per 
oulomb in going from

B to A and satis�es VAB = VA − VB. (Di�erent from ve
tors)

Easy algebra shows that VAB = −VBA and that VAC = VAB + VBC .
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A resistor is made from a

thin strip of metal �lm

deposited onto an

insulating 
erami
 base.

The 
hara
teristi
 of a


omponent is a graph showing

how the voltage and 
urrent are

related. We always 
hoose the


urrent and voltage arrows in

opposite dire
tions: this is the

passive sign 
onvention.

For a resistor, I ∝ V and

V

I
= R, its resistan
e whi
h is measured in Ohms

(Ω). This is Ohm's Law. Sometimes it is more 
onvenient to work in terms

of the 
ondu
tan
e, G = 1

R
= I

V

measured in Siemens (S).

The graph shows the 
hara
teristi
 of a 12.5 Ω resistor. The gradient of the

graph equals the 
ondu
tan
e G = 80 mS. Alternative zigzag symbol.
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To measure the voltage in a physi
al 
ir
uit, you use a voltmeter (V

in the �gure) whi
h has two test leads 
onne
ted to it usually 
oloured

red (marked +) and bla
k (marked �) respe
tively. The reading on

the voltmeter shows the voltage at the red lead relative to that at the

bla
k lead (or equivalently the red voltage minus the bla
k voltage). To

measure the voltage V in the �gure, you would 
onne
t the red lead to

the top end of the arrow (pointed end) and the bla
k lead to the bottom

(blunt end).

To measure 
urrent you use an ammeter (A in the �gure) whi
h also has two test leads 
oloured red

and bla
k respe
tively. The reading shows the 
urrent �owing through the ammeter into the red lead

and out of the bla
k lead. To measure the 
urrent I on the previous slide, you would need to break the

wire 
arrying the 
urrent and insert the ammeter as shown in the �gure.

With the 
onne
tions shown in the �gure, the readings on V and A will always have the same sign:

either both positive or both negative and will satisfy Ohm's law: V = IR. However, if the 
onne
tions

are reversed on either V or A, then the two readings will have opposite signs and V = −IR whi
h does

not satisfy Ohm's law.

So, if you want Ohm's law to be true you must be sure to 
onne
t the measuring devi
es the right way

round a

ording to the passive sign 
onvention.
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Ohm's law relates the

voltage drop a
ross a

resistor to the 
urrent

�owing in it.

If the voltage, V , is �xed elsewhere in the 
ir
uit, it is 
onvenient to think

that V 
auses the 
urrent I to �ow.

If the 
urrent, I, is �xed elsewhere in the 
ir
uit, it is more 
onvenient to

think that V is 
aused by the 
urrent I �owing through the resistor.

Neither statement is �more true� than the other. It is perhaps truer to say

that I and V are 
onstrained to satisfy V = I ×R.
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Gravitational potential energy, mgh, lost by a falling obje
t is transformed

into kineti
 energy or heat.

Current in a resistor

always �ows from a

high voltage (more

positive) to a low

voltage (more

negative).

When 
urrent �ows through a resistor, the ele
tri
al potential energy that is

lost is transformed into heat.

The power dissipated as heat in a resistor is equal to V I Watts (W). 1

Watt equals one Joule of energy per se
ond. Sin
e V and I always have

the same sign (see graph) the power dissipation is always positive.

Any 
omponent: P = V I gives the power absorbed by any 
omponent.

For a resistor only:

V

I
= R ⇒ P = V I = V

2

R
= I2R.
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Energy in an ele
tri
al 
ir
uit is supplied by voltage and 
urrent sour
es

An ideal voltage sour
e

maintains the same value of

V for all 
urrents. Its


hara
teristi
 is a verti
al

line with in�nite gradient.

There are two 
ommon

symbols.

V

I

1–1 2

0.1

0.2

–0.1

–0.2

I

V 1.5V

An ideal 
urrent sour
e

maintains the same value of

I for all voltages. Its


hara
teristi
 is a horizontal

line with zero gradient.

Noti
e that I is negative.

V

I

1–1 2

0.1

0.2

–0.1

–0.2

I

V
180mA

If the sour
e is supplying ele
tri
al energy to a 
ir
uit, then V I < 0.

However, when a re
har
heable battery is 
harging, V I > 0.
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In any 
ir
uit some 
ir
uit elements will be supplying energy and others

absorbing it. At all times, the power absorbed by all the elements will sum

to zero.

The 
ir
uit has two nodes whose

potential di�eren
e is 10 V.

Ohm's Law:

I = V

R
= 0.01 A

Power absorbed by resistor:

PR = V1 × I1 = (+10)× (+0.01) = +0.1W

For Ohm's law or power dissipation, V and I 
an be measured either

way round but must be in opposite dire
tions (passive sign 
onvention).

PR = V2 × I2 = (−10)× (−0.01) = +0.1W

Power absorbed by voltage sour
e:

PS = VS × IS = (+10)× (−0.01) = −0.1W

Total power absorbed by 
ir
uit elements: PS + PR = 0
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Quantity Letter Unit Symbol

Charge Q Coulomb C

Condu
tan
e G Siemens S

Current I Amp A

Energy W Joule J

Potential V Volt V

Power P Watt W

Resistan
e R Ohm Ω

Value Pre�x Symbol

10−3

milli m
10−6

mi
ro µ
10−9

nano n
10−12

pi
o p
10−15

femto f

Value Pre�x Symbol

103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
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� Cir
uits and Nodes

� Charge, Current and Voltage

� Resistors, Voltage Sour
e and Current Sour
es

� Power Dissipation and Power Conservation

For further details see Hayt Ch 2 or Irwin Ch 1.
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The �ve nodes are labelled

A, B, C, D, E where E is the

referen
e node.

Ea
h 
omponent that links a pair

of nodes is 
alled a bran
h of the

network.

Kir
ho�'s Voltage Law (KVL) is a 
onsequen
e of the fa
t that the work

done in moving a 
harge from one node to another does not depend on the

route you take; in parti
ular the work done in going from one node ba
k to

the same node by any route is zero.

KVL: the sum of the voltage 
hanges around any 
losed loop is zero.

Example: VDE + VBD + VAB + VEA = 0

Equivalent formulation:

VXY = VXE − VY E = VX − VY for any nodes X and Y .



Kir
ho�'s Current Law

2: Resistor Cir
uits

Kir
ho�'s Voltage

Law

⊲

Kir
ho�'s Current

Law

KCL Example

Series and Parallel

Dividers

Equivalent

Resistan
e: Series

Equivalent

Resistan
e: Parallel

Equivalent

Resistan
e: Parallel

Formulae

Simplifying Resistor

Networks

Non-ideal Voltage

Sour
e

Summary

E1.1 Analysis of Cir
uits (2017-10110) Resistor Cir
uits: 2 � 3 / 13

Wherever 
harges are free to move around, they will move to ensure 
harge

neutrality everywhere at all times.

A 
onsequen
e is Kir
ho�'s Current Law (KCL) whi
h says that the 
urrent

going into any 
losed region of a 
ir
uit must equal the 
urrent 
oming out.

KCL: The 
urrents �owing out of any 
losed region of a 
ir
uit sum to zero.

Green: I1 = I7

Blue: −I1 + I2 + I5 = 0

Gray: −I2 + I4 − I6 + I7 = 0
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The 
urrents and voltages in any linear 
ir
uit 
an be determined by using

KCL, KVL and Ohm's law.

Sometimes KCL allows you to determine 
urrents very easily without having

to solve any simultaneous equations:

How do we 
al
ulate I ?

KCL: −1 + I + 3 = 0
=⇒ I = −2A

Note that here I ends up negative whi
h means we 
hose the wrong arrow

dire
tion to label the 
ir
uit. This does not matter. You 
an 
hoose the

dire
tions arbitrarily and let the algebra take 
are of reality.
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Series: Components that are 
onne
ted in a 
hain so that the same 
urrent

�ows through ea
h one are said to be in series.

R1, R2, R3 are in series and the same


urrent always �ows through ea
h.

Within the 
hain, ea
h internal node


onne
ts to only two bran
hes.

R3 and R4 are not in series and do not

ne
essarily have the same 
urrent.

Parallel: Components that are 
onne
ted to the same pair of nodes are said

to be in parallel .

R1, R2, R3 are in parallel and the same

voltage is a
ross ea
h resistor (even

though R3 is not 
lose to the others).

R4 and R5 are also in parallel.
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VX = V1 + V2 + V3

= IR1 + IR2 + IR3

= I(R1 +R2 +R3)

V1

VX
= IR1

I(R1+R2+R3)

= R1

R1+R2+R3

= R1

RT

where RT = R1 +R2 +R3 is the

total resistan
e of the 
hain.

VX is divided into V1 : V2 : V3 in the proportions R1 : R2 : R3.

Approximate Voltage Divider:

If IY = 0, then VY = RA

RA+RB
VX .

If IY ≪ I, then VY ≈ RA

RA+RB
VX .
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Parallel resistors all share the same V .

I1 = V
R1

= V G1 where G1 = 1
R1

is the 
ondu
tan
e of R1.

IX = I1 + I2 + I3

= V G1 + V G2 + V G3

= V (G1 +G2 +G3)

I1
IX

= V G1

V (G1+G2+G3)
= G1

G1+G2+G3

= G1

GP

where GP = G1 +G2 +G3 is the total 
ondu
tan
e of the resistors.

IX is divided into I1 : I2 : I3 in the proportions G1 : G2 : G3.

Spe
ial 
ase for only two resistors:

I1 : I2 = G1 : G2 = R2 : R1 ⇒ I1 = R2

R1+R2

IX .
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We know that V = V1 + V2 + V3 = I(R1 +R2 +R3) = IRT

So we 
an repla
e the three resistors

by a single equivalent resistor of

value RT without a�e
ting the

relationship between V and I.

Repla
ing series resistors by their

equivalent resistor will not a�e
t any

of the voltages or 
urrents in the rest

of the 
ir
uit.

However the individual voltages V1,

V2 and V3 are no longer a

essible.
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Similarly we known that I = I1 + I2 + I3 = V (G1 +G2 +G3) = V GP .

So V = IRP where RP = 1
GP

= 1
G1+G2+G3

= 1
1/R1+1/R2+1/R3

We 
an use a single

equivalent resistor of

resistan
e RP without

a�e
ting the

relationship between

V and I.

Repla
ing parallel resistors by

their equivalent resistor will not

a�e
t any of the voltages or


urrents in the rest of the 
ir
uit.

R4and R5 are also in parallel.

Mu
h simpler - although none of the original 
urrents I1, · · · , I5 are now

a

essible. Current IS and the three node voltages are identi
al.
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For parallel resistors GP = G1 +G2 +G3

or equivalently RP = R1||R2||R3 = 1
1/R1+1/R2+1/R3

.

These formulae work for any number of resistors.

� For the spe
ial 
ase of two parallel resistors

RP = 1
1/R1+1/R2

= R1R2

R1+R2

(�produ
t over sum�)

� If one resistor is a multiple of the other

Suppose R2 = kR1, then

RP = R1R2

R1+R2

=
kR2

1

(k+1)R1

= k
k+1R1 = (1− 1

k+1 )R1

Example: 1 kΩ || 99 kΩ = 99
100 kΩ =

(

1− 1
100

)

kΩ

Important: The equivalent resistan
e of parallel resistors is always less than

any of them.
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Many resistor 
ir
uits 
an be

simpli�ed by alternately 
ombining

series and parallel resistors.

Series: 2 k + 1 k = 3 k

Parallel: 3 k || 7 k = 2.1 k

Parallel: 2 k || 3 k = 1.2 k

Series: 2.1 k + 1.2 k = 3.3 k

Sadly this method does not always

work: there are no series or parallel

resistors here.
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An ideal battery has a 
hara
teristi
 that is

verti
al: battery voltage does not vary with


urrent.

Normally a battery is supplying energy so V

and I have opposite signs, so I ≤ 0.

An real battery has a 
hara
teristi
 that has

a slight positive slope: battery voltage

de
reases as the (negative) 
urrent in
reases.

Model this by in
luding a small resistor in

series. V = VB + IRB .

The equivalent resistan
e for a battery

in
reases at low temperatures.



Summary

2: Resistor Cir
uits

Kir
ho�'s Voltage

Law

Kir
ho�'s Current

Law

KCL Example

Series and Parallel

Dividers

Equivalent

Resistan
e: Series

Equivalent

Resistan
e: Parallel

Equivalent

Resistan
e: Parallel

Formulae

Simplifying Resistor

Networks

Non-ideal Voltage

Sour
e

⊲ Summary

E1.1 Analysis of Cir
uits (2017-10110) Resistor Cir
uits: 2 � 13 / 13

� Ki
ho�'s Voltage and Current Laws

� Series and Parallel 
omponents

� Voltage and Current Dividers

� Simplifying Resistor Networks

� Battery Internal Resistan
e

For further details see Hayt Ch 3 or Irwin Ch 2.
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The aim of nodal analysis is to determine the voltage at ea
h node relative

to the referen
e node (or ground). On
e you have done this you 
an easily

work out anything else you need.

There are two ways to do this:

(1) Nodal Analysis - systemati
; always works

(2) Cir
uit Manipulation - ad ho
; but 
an be less work and 
learer

Reminders:

A node is all the points in a 
ir
uit

that are dire
tly inter
onne
ted.

We assume the inter
onne
tions

have zero resistan
e so all points

within a node have the same

voltage. Five nodes: A, · · · , E.

Ohm's Law: VBD = IR5

KVL: VBD = VB − VD

KCL: Total 
urrent exiting any 
losed region is zero.
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To �nd the voltage at ea
h node, the �rst

step is to label ea
h node with its voltage

as follows

(1) Pi
k any node as the voltage referen
e. Label its voltage as 0 V.

(2) If any �xed voltage sour
es are 
onne
ted to a labelled node, label their

other ends by adding the value of the sour
e onto the voltage of the

labelled end.

(3) Pi
k an unlabelled node and label it with X, Y, . . ., then go ba
k to

step (2) until all nodes are labelled.
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The se
ond step is to write down a KCL equation for ea
h node labelled

with a variable by setting the total 
urrent �owing out of the node to zero.

For a 
ir
uit with N nodes and S voltage sour
es you will have N − S − 1

simultaneous equations to solve.

We only have one variable:

X−8
1 k + X−0

2 k + X−(−2)
3 k = 0 ⇒ (6X − 48) + 3X + (2X + 4) = 0

11X = 44 ⇒ X = 4

Numerator for a resistor is always of the form X − VN where VN is the

voltage on the other side of the resistor.
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Current sour
es 
ause no problems.

(1) Pi
k referen
e node.

(2) Label nodes: 8, X and Y .

(3) Write equations

X−8
1 + X

2 + X−Y

3 = 0

Y−X

3 + (−1) = 0

Ohm's law works OK if all resistors are in kΩ and all 
urrents in mA.

(4) Solve the equations: X = 6, Y = 9
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Floating voltage sour
es have neither end 
onne
ted to a known �xed

voltage. We have to 
hange how we form the KCL equations slightly.

(1) Pi
k referen
e node.

(2) Label nodes: 8, X and X + 2 sin
e it

is joined to X via a voltage sour
e.

(3) Write KCL equations but 
ount all the

nodes 
onne
ted via �oating voltage

sour
es as a single �super-node� giving one

equation

X−8
1 + X

2 + (X+2)−0
3 = 0

(4) Solve the equations: X = 4

Ohm's law always involves the di�eren
e between the voltages at either end

of a resistor. (Obvious but easily forgotten)
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A very useful sub-
ir
uit that 
al
ulates the weighted average of any

number of voltages.

KCL equation for node X:

X−V1

R1

+ X−V2

R2

+ X−V3

R3

= 0

Still works if V3 = 0.

Or using 
ondu
tan
es:

(X − V1)G1 + (X − V2)G2 + (X − V3)G3 = 0

X(G1 +G2 +G3) = V1G1 + V2G2 + V3G3

X = V1G1+V2G2+V3G3

G1+G2+G3

=
∑

3

i=1
ViGi∑

3

i=1
Gi

Voltage X is the average of V1, V2, V3 weighted by the 
ondu
tan
es.
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A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a

value 6 in de
imal. If we label the bits b2b1b0, then b = 4b2 + 2b1 + b0.

We use b2b1b0 to 
ontrol the swit
hes whi
h determine whether Vi = 5V or

Vi = 0 V. Thus Vi = 5bi. Swit
hes shown for b = 6.
X =

1

2
V2+

1

4
V1+

1

8
V0

1

2
+ 1

4
+ 1

8

= 1
7 (4V2 + 2V1 + V0)

but Vi = 5× bi sin
e it 
onne
ts to

either 0V or 5V

= 5
7 (4b2 + 2b1 + b0) =

5
7b

G2 = 1
R2

= 1
2 mS, . . .

So we have made a 
ir
uit in whi
h X is proportional to a binary number b.
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A dependent voltage or 
urrent sour
e is one whose value is determined by

voltages or 
urrents elsewhere in the 
ir
uit. These are most 
ommonly

used when modelling the behaviour of transistors or op-amps. Ea
h

dependent sour
e has a de�ning equation.

In this 
ir
uit: IS = 0.2W mA where W is in volts.

(1) Pi
k referen
e node.

(2) Label nodes: 0, U , X and Y .

(3) Write equation for the dependent

sour
e, IS , in terms of node voltages:

IS = 0.2 (U −X)

(4) Write KCL equations:

X−U

10 + X

10 + X−Y

20 = 0 Y−X

20 + IS + Y

15 = 0

(5) Solve all three equations to �nd X, Y and IS in terms of U :

X = 0.1U, Y = −1.5U, IS = 0.18U

Note that the value of U is assumed to be known.
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The value of the highlighted dependent voltage sour
e is VS = 10J Volts

where J is the indi
ated 
urrent in mA.

(1) Pi
k referen
e node.

(2) Label nodes: 0, 5, X, X + 3 and

X + VS .

(3) Write equation for the dependent

sour
e, VS , in terms of node voltages:

VS = 10J = 10× X+VS−5
40 ⇒ 3VS = X − 5

(4) Write KCL equations: all nodes 
onne
ted by �oating voltage sour
es

and all 
omponents 
onne
ting these nodes are in the same �super-node�

X+VS−5
40 + X

5 + X+3
5 = 0

(5) Solve the two equations: X = −1 and VS = −2
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(1) Pi
k any node as the voltage referen
e. Label its voltage as 0 V. Label

any dependent sour
es with VS , IS , . . ..

(2) If any voltage sour
es are 
onne
ted to a labelled node, label their other

ends by adding the value of the sour
e onto the voltage of the labelled end.

Repeat as many times as possible.

(3) Pi
k an unlabelled node and label it with X, Y, . . ., then loop ba
k to

step (2) until all nodes are labelled.

(4) For ea
h dependent sour
e, write down an equation that expresses its

value in terms of other node voltages.

(5) Write down a KCL equation for ea
h �normal� node (i.e. one that is not


onne
ted to a �oating voltage sour
e).

(6) Write down a KCL equation for ea
h �super-node�. A super-node


onsists of a set of nodes that are joined by �oating voltage sour
es and

in
ludes any other 
omponents joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.
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• Nodal Analysis

◦ Simple Cir
uits (no �oating or dependent voltage sour
es)

◦ Floating Voltage Sour
es

⊲ use supernodes: all the nodes 
onne
ted by �oating voltage

sour
es (independent or dependent)

◦ Dependent Voltage and Current Sour
es

⊲ Label ea
h sour
e with a variable

⊲ Write extra equations expressing the sour
e values in terms of

node voltages

⊲ Write down the KCL equations as before

• Mesh Analysis (in most textbooks)

◦ Alternative to nodal analysis but doesn't work for all 
ir
uits

◦ No signi�
ant bene�ts ⇒ ignore it

For further details see Hayt Ch 4 or Irwin Ch 3.
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Suppose we use variables instead of �xed values for all of the independent

voltage and 
urrent sour
es. We 
an then use nodal analysis to �nd all

node voltages in terms of the sour
e values.

(1) Label all the nodes

(2) KCL equations

X−U1

2 + X

1 + X−Y

3 = 0
Y−X

3 + (−U2) = 0

(3) Solve for the node voltages

X = 1
3U1 +

2
3U2, Y = 1

3U1 +
11
3 U2

Steps (2) and (3) never involve multiplying two sour
e values together, so:

Linearity Theorem: For any 
ir
uit 
ontaining resistors and independent

voltage and 
urrent sour
es, every node voltage and bran
h 
urrent is a

linear fun
tion of the sour
e values and has the form

∑
aiUi where the Ui

are the sour
e values and the ai are suitably dimensioned 
onstants.

Also true for a 
ir
uit 
ontaining dependent sour
es whose values are

proportional to voltages or 
urrents elsewhere in the 
ir
uit.
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A zero-valued voltage sour
e has zero volts

between its terminals for any 
urrent. It is

equivalent to a short-
ir
uit or pie
e of wire

or resistor of 0 Ω (or ∞ S).

A zero-valued 
urrent sour
e has no 
urrent

�owing between its terminals. It is equivalent

to an open-
ir
uit or a broken wire or a

resistor of ∞ Ω (or 0 S).
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We 
an use nodal analysis to �nd X in terms of U , V and W .

KCL:

X−U

2 + X−V

6 + X

1 −W = 0

10X − 3U − V − 6W = 0

X = 0.3U + 0.1V + 0.6W

From the linearity theorem, we know anyway that X = aU + bV + cW so

all we need to do is �nd the values of a, b and c. We �nd ea
h 
oe�
ient

in turn by setting all the other sour
es to zero:

We have XU = aU + b× 0 + c× 0 = aU .

Similarly, XV = bV and XW = cW ⇒ X = XU +XV +XW .
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Superposition:

Find the e�e
t of ea
h sour
e on its own

by setting all other sour
es to zero. Then

add up the results.

XU =
6

7

2+ 6

7

U = 6
20U = 0.3U

XV =
2

3

6+ 2

3

V = 2
20V = 0.1V

XW = 6
6+ 2

3

W × 2
3 = 12

20W = 0.6W

Adding them up: X = XU +XV +XW = 0.3U + 0.1V + 0.6W
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A dependent sour
e is one that is determined by the voltage and/or 
urrent

elsewhere in the 
ir
uit via a known equation. Here V , Y −X.

Step 1: Pretend all sour
es are independent

and use superposition to �nd expressions for

the node voltages:

X = 10
3 U1 + 2U2 +

1
6V

Y = 2U1 + 6U2 +
1
2V

Step 2: Express the dependent sour
e values in terms of node voltages:

V = Y −X

Step 3: Eliminate the dependent sour
e values from the node voltage

equations:

X = 10
3 U1 + 2U2 +

1
6 (Y −X) ⇒ 7

6X − 1
6Y = 10

3 U1 + 2U2

Y = 2U1 + 6U2 +
1
2 (Y −X)) ⇒ 1

2X + 1
2Y = 2U1 + 6U2

X = 3U1 + 3U2

Y = U1 + 9U2

Note: This is an alternative to nodal anlysis: you get the same answer.
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uits (2018-10340) Linearity and Superposition: 4 � 7 / 10

Any 
urrent or voltage 
an be written X = a1U1 + a2U2 + a3U3 + . . ..

Using nodal analysis (slide 4-2) or else

superposition:

X = 1
3U1 +

2
3U2.

Suppose we know U2 = 6 mA, then

X = 1
3U1 +

2
3U2 = 1

3U1 + 4.

If all the independent sour
es ex
ept for U1

have known �xed values, then

X = a1U1 + b

where b = a2U2 + a3U3 + . . . .

This has a straight line graph.
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E1.1 Analysis of Cir
uits (2018-10340) Linearity and Superposition: 4 � 8 / 10

The power absorbed (or dissipated) by a 
omponent always equals V I

where the measurement dire
tions of V and I follow the passive sign


onvention.

For a resistor V I = V
2

R
= I2R.

Power in resistor is P = (U1+U2)
2

10 = 6.4W

Power due to U1 alone is P1 =
U

2

1

10 = 0.9W

Power due to U2 alone is P2 =
U

2

2

10 = 2.5W

P 6= P1 + P2 ⇒ Power does not obey superposition.

You must use superposition to 
al
ulate the total V and/or the total I and

then 
al
ulate the power.
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E1.1 Analysis of Cir
uits (2018-10340) Linearity and Superposition: 4 � 9 / 10

From the linearity theorem, all voltages and 
urrents have the form

∑
aiUi

where the Ui are the values of the independent sour
es.

If you multiply all the independent sour
es by the same fa
tor, k, then all

voltages and 
urrents in the 
ir
uit will be multiplied by k.

The power dissipated in any 
omponent will be multiplied by k2.

Spe
ial Case:

If there is only one independent sour
e, U , then all voltages and 
urrents

are proportional to U and all power dissipations are proportional to U2.
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E1.1 Analysis of Cir
uits (2018-10340) Linearity and Superposition: 4 � 10 / 10

• Linearity Theorem: X =
∑

i
aiUi over all independent sour
es Ui

• Superposition: sometimes simpler than nodal analysis, often more

insight.

◦ Zero-value voltage and 
urrent sour
es

◦ Dependent sour
es - treat as independent and add dependen
y

as an extra equation

• If all sour
es are �xed ex
ept for U1 then all voltages and 
urrents in

the 
ir
uit have the form aU1 + b.

• Power does not obey superposition.

• Proportionality: multiplying all sour
es by k multiplies all voltages and


urrents by k and all powers by k2.

For further details see Hayt Ch 5 or Irwin Ch 5.
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 2 / 12

From linearity theorem: V = aI + b.

Use nodal analysis:

KCL�X:

X

1 − 6 + X−V

2 = 0

KCL�V:

V−X

2 − I = 0

Eliminating X gives: V = 3I + 6.

There are in�nitely many networks with the same values of a and b:

These four shaded networks are equivalent be
ause the relationship

between V and I is exa
tly the same in ea
h 
ase.

The last two are parti
ularly simple and are respe
tively 
alled the Norton

and Thévenin equivalent networks.
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 3 / 12

Thévenin Theorem: Any two-terminal network 
onsisting of resistors, �xed

voltage/
urrent sour
es and linear dependent sour
es is externally

equivalent to a 
ir
uit 
onsisting of a resistor in series with a �xed voltage

sour
e.

We 
an repla
e the shaded part of the


ir
uit with its Thévenin equivalent

network.

The voltages and 
urrents in the unshaded

part of the 
ir
uit will be identi
al in both


ir
uits.

The new 
omponents are 
alled the

Thévenin equivalent resistan
e, RTh, and

the Thévenin equivalent voltage, VTh, of

the original network.

This is often a useful way to simplify a 
ompli
ated 
ir
uit (provided that

you do not want to know the voltages and 
urrents in the shaded part).
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 4 / 12

A Thévenin equivalent 
ir
uit has

a straight line 
hara
teristi
 with

the equation:

V = RThI + VTh

⇔ I = 1
RTh

V −
VTh

RTh

-2 0 2 4 6 8
-3

-2

-1

0

1

V (V)

I (
m

A
)

Three important quantities are:

Open Cir
uit Voltage: If I = 0 then VOC = VTh. (X-inter
ept: o)

Short Cir
uit Current: If V = 0 then ISC = −
VTh

RTh

(Y-inter
ept: x)

Thévenin Resistan
e: The slope of the 
hara
teristi
 is

dI

dV
= 1

RTh

.

If we know the value of any two of these three quantities, we 
an work out

VTh and RTh.

In any two-terminal 
ir
uit with the same 
hara
teristi
, the three

quantities will have the same values. So if we 
an determine two of them,

we 
an work out the Thévenin equivalent.
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 5 / 12

We need any two of the following:

Open Cir
uit Voltage: VOC = VTh = 6V

Short Cir
uit Current: ISC = −
VTh

RTh

= −2mA

Thévenin Resistan
e: RTh = 2k + 1 k = 3 kΩ

Thévenin Resistan
e:

We set all the independent sour
es to zero (voltage sour
es → short 
ir
uit,


urrent sour
es→ open 
ir
uit). Then we �nd the equivalent resistan
e

between the two terminals.

The 3 k resistor has no e�e
t so RTh = 2k + 1 k = 3 k.

Any measurement gives the same result on an equivalent 
ir
uit.
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 6 / 12

For a 
ompli
ated 
ir
uit, you 
an use

nodal analysis to �nd the Thévenin

equivalent dire
tly in the form:

V = VTh + IRTh.

Step 1: Label ground as an output terminal + label other nodes.

Step 2: Write down the equations (Y is a supernode)

X−V

2 + X

1 + X−Y

1 = 0

Y−3−V

1 + Y−X

1 + Y−3
2 = 0

V−Y+3
1 + V−X

2 − I = 0

Step 3: Eliminate X and Y and

solve for V in terms of I:

V = 7
5I −

3
5 = RThI + VTh
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uits (2017-10110) Thevenin and Norton: 5 � 7 / 12

Norton Theorem: Any two-terminal network 
onsisting of resistors, �xed

voltage/
urrent sour
es and linear dependent sour
es is externally

equivalent to a 
ir
uit 
onsisting of a resistor in parallel with a �xed 
urrent

sour
e.

KCL: −I − INo +
V

RTh

= 0

⇔ I = 1
RTh

V − INo


.f. Thévenin (slide 5-4):

Same R and INo = VTh

RTh
-2 0 2 4 6 8

-3

-2

-1

0

1

V (V)

Open Cir
uit Voltage: If I = 0 then VOC = INoRTh.

Short Cir
uit Current: If V = 0 then ISC = −INo

Thévenin Resistan
e: The slope of the 
hara
teristi
 is

1
RTh

.

Easy to 
hange between Norton and Thévenin: VTh = INoRTh.

Usually best to use Thévenin for small RTh and Norton for large RTh


ompared to the other impedan
es in the 
ir
uit.
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 8 / 12

Suppose we 
onne
t a variable resistor, RL, a
ross a two-terminal network.

From Thévenin's theorem, even a 
ompli
ated network is equivalent to a

voltage sour
e and a resistor.

We know I = VTh

RTh+RL

⇒ power in RL is PL = I
2
RL =

V
2

Th
RL

(RTh+RL)2

To �nd the RL that maximizes PL:

0 = dPL

dRL

=
(RTh+RL)2V 2

Th
−2V 2

Th
RL(RTh+RL)

(RTh+RL)4

=
V

2

Th
(RTh+RL)−2V 2

Th
RL

(RTh+RL)3

⇒ V
2
Th

((RTh +RL)− 2RL) = 0

⇒ RL = RTh ⇒ P(max) =
V

2

Th

4RTh

For �xed RTh, the maximum power transfer is

when RL = RTh (�mat
hed load �).
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 9 / 12

Sometimes 
hanging between Thévenin and Norton 
an simplify a 
ir
uit.

Suppose we want to 
al
ulate I.

Norton → Thévenin on 
urrent sour
e: I = 18−(−10)
5 = 5.6 A

If you 
an't spot any 
lever tri
ks, you 
an always �nd out everything with

nodal analysis.

−6 + X

3 + X−(−10)
2 = 0

⇒ 5X = 36− 30 = 6

⇒ X = 1.2

⇒ I = X−(−10)
2 = 5.6
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 10 / 12

If all but one bran
hes 
onne
ting to a node are voltage sour
es or are


urrent sour
es, you 
an 
hoose any of the bran
hes to be the sour
eless

one.

Voltage Sour
es:

We 
an use the left

node as the referen
e

=

Current Sour
es:

KCL gives 
urrent into

rightmost node

=
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E1.1 Analysis of Cir
uits (2017-10110) Thevenin and Norton: 5 � 11 / 12

If we have any number of voltage sour
es and resistors in series we 
an


al
ulate the total voltage a
ross the 
hain as:

V = 8I − 2 + 7I + 5 + 9I = (−2 + 5) + (8 + 7 + 9)I

= 3 + 24I

We 
an arbitrarily

rearrange the order of

the 
omponents

without a�e
ting

V = 3 + 24I.

If we move all the voltage sour
es together and all the resistors together we


an merge them and then we get the Thévenin equivalent.
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uits (2017-10110) Thevenin and Norton: 5 � 12 / 12

• Thévenin and Norton Equivalent Cir
uits

◦ A network has Thévenin and Norton equivalents if:

⊲ only 2 terminals 
onne
t it to the outside world

⊲ it is made of resistors + sour
es + linear dependent sour
es

◦ How to determine VTh, INo and RTh

⊲ Method 1: Conne
t 
urrent sour
e → Nodal analysis

⊲ Method 2: Find any two of:

(a) VOC = VTh, the open-
ir
uit voltage

(b) ISC = −INo, the short-
ir
uit 
urrent

(
) RTh, equivalent resistan
e with all sour
es set to zero

⊲ Related by Ohm's law: VTh = INoRTh

• Load resistor for maximum power transfer = RTh

• Sour
e Transformation and Rearrangement

For further details see Hayt Ch 5 & A3 or Irwin Ch 5.
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E1.1 Analysis of Cir
uits (2017-10110) Operational Ampli�ers: 6 � 2 / 12

An op amp (operational ampli�er) is a


ir
uit with two inputs and one output.

Y = A (V+ − V
−
)

The gain, A, is usually very large: e.g. A = 105 at low frequen
ies.

The input 
urrents are very small: e.g. ±1 nA.

Internally it is a 
ompli
ated 
ir
uit with

about 40 
omponents, but we 
an forget

about that and treat it as an almost

perfe
t dependent voltage sour
e.

Integrated 
ir
uit pins are

numbered anti-
lo
kwise from

blob or not
h (when looking

from above).
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uits (2017-10110) Operational Ampli�ers: 6 � 3 / 12

In a 
entral heating system, if the temperature falls too low the thermostat

turns on the heating, when it rises the thermostat turns it o� again.

Negative feedba
k is when the o

uren
e of an event 
auses something to

happen that 
ountera
ts the original event.

If op-amp output Y falls then V
−

will fall by

the same amount so (V+ − V
−
) will in
rease.

This 
auses Y to rise sin
e

Y = A (V+ − V
−
).

Y = A (X − Y )

Y (1 + A) = AX ⇒ Y = 1

1+1/AX → X for large A

If Y = A(V+ − V
−
) then V+ − V

−
= Y

A whi
h, sin
e A ≃ 105, is normally

very very small.

Golden Rule: Negative feedba
k adjusts the output to make V+ ≃ V
−

.
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Nodal analysis is simpli�ed by making some assumptions.

Note: The op-amp needs two power supply


onne
tions; usually +15V and −15V.

These are almost always omitted from the


ir
uit diagram. The 
urrents only sum to

zero (KCL) if all �ve 
onne
tions are

in
luded.

1. Che
k for negative feedba
k: to ensure that an in
rease in Y makes

(V+ − V
−
) de
rease, Y must be 
onne
ted (usually via other


omponents) to V
−

.

2. Assume V+ = V
−

: Sin
e (V+ − V
−
) = Y

A , this is the same as assuming

that A = ∞. Requires negative feedba
k.

3. Assume zero input 
urrent: in most 
ir
uits, the 
urrent at the op-amp

input terminals is mu
h smaller than the other 
urrents in the 
ir
uit,

so we assume it is zero.

4. Apply KCL at ea
h op-amp input node separately (input 
urrents = 0).

5. Do not apply KCL at output node (output 
urrent is unknown).
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uits (2017-10110) Operational Ampli�ers: 6 � 5 / 12

Cir
uit has input voltage X and output voltage Y . The 
ir
uit gain , Y
X .

Applying steps 1 to 3:

1. Negative feedba
k OK.

2. V
−
= V+ = X

3. Zero input 
urrent at V
−

means R2 and R1 are in series

(⇒ same 
urrent) and form a voltage divider. So X = R1

R1+R2

Y .

So Y =R1+R2

R1

X =
(

1 + R2

R1

)

X = +4X.

Non-inverting ampli�er be
ause the gain

Y
X is positive.

Consequen
e of X 
onne
ting to V+ input.

Can have any gain ≥ 1 by 
hoosing the ratio

R2

R1

.

Cause/e�e
t reversal: Potential divider 
auses V
−
= 1

4
Y .

Feedba
k inverts this so that Y = 4V+.
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A spe
ial 
ase of the non-inverting ampli�er

with R1 = ∞ and/or R2 = 0.

Gain is 1 + R2

R1

= 1.

Output Y �follows� input X.

Advantage: Can supply a large 
urrent at Y while drawing almost no


urrent from X. Useful if the sour
e supplying X has a high resistan
e.

Without voltage follower: Y = 0.01U .

With voltage follower: Y = U .

Although the voltage gain is only 1, the power gain is mu
h larger.
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Negative feedba
k OK.

Sin
e V+ = 0, we must have V
−
= 0.

KCL at V
−

node:

0−X
R1

+ 0−Y
R2

= 0 ⇒ Y = −R2

R1

X = −3X.

Inverting Ampli�er be
ause gain

Y
X is negative. Consequen
e of X


onne
ting to the V
−

input (via R1).

Can have any gain ≤ 0 by 
hoosing the ratio

R2

R1

.

Negative feedba
k holds V
−

very 
lose to V+.

If V+ = 0V, then V
−

is 
alled a virtual earth or virtual ground .

Nodal Analysis: Do KCL at V+ and/or V
−

to solve 
ir
uit. When analysing

a 
ir
uit, you never do KCL at the output node of an opamp be
ause its

output 
urrent is unknown. The only ex
eption is if you have already solved

the 
ir
uit and you want to �nd out what the op amp output 
urrent is

(e.g. to 
he
k it is not too high).
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uits (2017-10110) Operational Ampli�ers: 6 � 8 / 12

We 
an 
onne
t several input signals to the

inverting ampli�er.

As before, V
−
= 0 is a virtual earth due to

negative feedba
k and V+ = 0.

KCL at V
−

node:

0−X1

R1

+ 0−X2

R2

+ 0−X3

R3

+ 0−Y
RF

= 0

⇒ Y = −
(

RF

R1

X1 +
RF

R2

X2 +
RF

R3

X3

)

⇒ Y = − (8X1 + 4X2 + 4X3).
Y is a weighted sum of the input voltages with the weight of Xi equal to

−RF

Ri
= −GiRF .

Input Isolation: The 
urrent through R1 equals

X1−0

R1

whi
h is not a�e
ted

by X2 or X3. Be
ause V
−

is held at a �xed voltage, the inputs are isolated

from ea
h other.
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A 2-input 
ir
uit 
ombining inverting

and non-inverting ampli�ers.

Linearity ⇒ Z = aX + bY .

Use superposition to �nd a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have an

inverting ampli�er, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We 
an redraw 
ir
uit to make it look more familiar: a

potential divider followed by a non-inverting ampli�er.

R3 and R4 are a potential divider (sin
e 
urrent into V+ equals zero), so

V+ = R4

R3+R4

Y = 3

4
Y .

The non-inverting ampli�er has a gain of

R1+R2

R1

= 4.

The 
ombined gain is b = R4

R3+R4

× R1+R2

R1

= 3

4
× 4 = +3.

Combining the two gives Z = 3 (Y −X). The output of a di�erential

ampli�er is proportional to the di�feren
e between its two inputs.
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Positive feedba
k: If op-amp output Y rises then

(V+ − V
−
) will in
rease. This 
auses Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,

(V+ − V
−
) > 0 so the output stays at +14V.

If X > 4, then (V+ − V
−
) < 0, Y will rapidly

swit
h to its minimum value (e.g. −14V).

Now Z = −4 and Y will only swit
h ba
k to +14

when X falls below −4.

Negative feedba
k stabilizes the output to make

V+ ≃ V
−

.

Positive feedba
k adjusts the output to maximize

|V+ − V
−
|. Output will swit
h between its

maximum and minimum values, e.g. ±14V

(slightly less than the ±15V power supplies).

Swit
hing will happen when V+ = V
−

.
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The behaviour of an op-amp 
ir
uit depends on the ratio of resistor values:

gain =

−R2/R1. How do you 
hoose between

3Ω/1Ω, 3 kΩ/1 kΩ ,

3MΩ/1MΩ

and

3GΩ/1GΩ?

Small resistors 
ause large 
urrents.

If X = ±1V, then Y = ∓3V,

and so I = Y−0

R2

= ∓1A.

However typi
al op-amps 
an only supply

±5mA, so the 
ir
uit will not work.

Large resistors in
rease sensitivity to

interferen
e and to op-amp input 
urrents.

If the bias 
urrent into V
−

is IB = 1nA,

then KCL at V
−

gives

0−Y
R2

+ 0−X
R1

+ IB = 0 ⇒ Y = −R2

R1

X + IBR2 = −3X + 3

instead of Y = −3X.

Within wide limits, the absolute resistor values have little e�e
t.

However you should avoid extremes.
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• Ideal properties:

◦ Zero input 
urrent

◦ In�nite gain

◦ Do not use KCL at output (ex
ept to determine output 
urrent).

• Negative Feedba
k 
ir
uits:

◦ Assume V+ = V
−

and zero input 
urrent

◦ Standard ampli�er 
ir
uits:

⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain =

−R2/R1

⊲ Summing ampli�er

⊲ Di�erential Ampli�er

• Positive feedba
k 
ir
uits:

◦ VOUT = ±Vmax (no good for an ampli�er)

◦ S
hmitt Trigger: swit
hes when V+ = V
−

.

• Choosing resistors: not too low or too high.

For further details see Hayt Ch 6 or Irwin Ch 4.
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In the non-inverting op amp 
ir
uit we take a

fra
tion of the output signal, Y , and subtra
t it

from the input signal, X.

We 
an represent this using a blo
k diagram:

A = Y

E

: the gain of the op amp

B = W

Y
= 1

4

: gain of the feedba
k path

The �+� and ��� signs indi
ate that the feedba
k is

subtra
ted from X to give an �error� signal, E.

A gain blo
k has one input and one output

(indi
ated here by an arrow): V = A× U

An adder blo
k many inputs and one output. The

signs indi
ate whether ea
h input is added or

subtra
ted: Q = P1 + P2 − P3

Normally, inputs are on the left and outputs are on the right.
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• Label inputs, output and adder outputs

• Write down equations for the output and all adder outputs

Y = AE

E = X −BY

Never use Ki
ho�'s 
urrent law in blo
k diagrams.

• Solve the equations by eliminating unwanted variables

Y = AE= A (X −BY )= AX −ABY

⇒ Y (1 +AB) = AX ⇒ Y

X
= A

1+AB

AB is 
alled the loop gain of the 
ir
uit. If you

break the loop at any point and inje
t a signal ∆

after the break, this will 
ause the other side of the

break to 
hange by −∆×AB.
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Sometimes we have an additional blo
k at the

input shown here as C.

We see that E = CX −BY and, as before,

Y = AE

Eliminating E :

Y

X
= CA

1+AB
= C

A−1+B
≈ C

B

provided A−1 ≪ B.

Y

X

equals the forward gain, CA, divided by the loop gain plus one.

Inverting Ampli�er

Error signal is E , V+ − V−

Hen
e V+ = 0 ⇒ V− = −E

Op-amp output is Y = AE where A ≈ 105 is

the op-amp gain.

Use superposition, nodal analysis or weighted average formula to �nd an

expression for −E in terms of X and Y :

−E =
1

1
X+ 1

3
Y

1

1
+ 1

3

= 3

4
X + 1

4
Y = − (CX − BY )

Hen
e C = − 3

4
and B = + 1

4

and

Y

X
≈ C

B
= −3
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Central Heating:

X: Desired temperature

Y : A
tual room temperature

A: Rather 
ompli
ated system of

boiler and radiators

Steam Engine Governor:

X: Desired Speed

Y : A
tual Speed

A: Rotational speed 
auses weights to �y apart

(
entrifugal for
e) whi
h adjusts the steam

supply via a throttle valve.

Many Other Examples:

E
onomi
s: Demand↑ ⇒Pri
e↑ ⇒Supply↑ ⇒Supply=Demand

Biology: More rabbits ⇒Not enough food ⇒Less rabbits ⇒Enough food
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1) Gain Stabilization

The gain of a feedba
k system is almost entirely determined by the

feedba
k path and not by the gain of the ampli�
ation path. This means

that you 
an get predi
table gains even when the gain of the

ampli�
ation path is unknown or time-varying.

2) Distortion Redu
tion

High power ampli�ers are often non-linear, e.g. their gain de
reases at

high signal amplitudes. Sin
e the gain of a feedba
k system does not

depend mu
h on the gain of the ampli�
ation path, the non-linearity has

little e�e
t.

3) Interferen
e Reje
tion

External disturban
es have little e�e
t on the output of a feedba
k

system be
ause the feedba
k adjusts to 
ompensate for them.
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Gain is

Y

X
= A

1+AB
= 1

A−1+B

If A is very large then

Y

X
≈ 1

B

and the pre
ise value

of A makes no di�eren
e.

�very large� means A−1 ≪ B ⇔ A ≫ 1

B

. So as long as A is mu
h larger

than the desired gain, its a
tual value does not matter.

For an op amp A ≈ 105 at low frequen
ies but less at high frequen
ies.

Motor Speed Control:

A is the �gain� of the ampli�er and motor

(units = rotation speed per volt = rad.s−1V −1

).

A 
annot be pre
isely known: it depends on

me
hani
al load and fri
tion.

However this is OK so long as it is large enough.

We 
an sense the motor speed using gear-teeth and

a magneti
 (Hall e�e
t) sensor together with a


ir
uit that 
onverts frequen
y to voltage.
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If A in
ludes a high-power ampli�er and/or

a me
hani
al system (e.g. a motor) it is

almost always non-linear.

y = 15x− 2x3

: gain de
reases at high |x|
-1 0 1

-20

-10

0

10

20

x,u

y(x)

y(u)

x = sin t ⇒ y = 15 sin t− 2 sin3 t
⇒ y = 13.5 sin t+ 0.5 sin 3t

The gain is only 13.5 instead of 15

and harmoni
 distortion is added at a

multiple of the original frequen
y.

The total harmoni
 distortion (THD)

is equal to

0.5
2

13.52
= 0.14%.

0 5 10 15
-20

-10

0

10

20

Time

 

 

13.5x(t)
y(t)
Error

Use feedba
k to redu
e distortion

Put in feedba
k loop with ×100 gain,

A = Y

E
= 100 Y

X

and B = 1

15

Even though A depends on the signal amplitude, the gain is

Y

U
≈ 1

B
= 15.
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The easiest way to derive trigonometri
al identities is to use De Moivre's theorem

cos 3t+ i sin 3t = (cos t+ i sin t)3 = cos3 t+ 3i sin t cos2 t− 3 sin2 t cos t− i sin3
t.

Taking the imaginary part of both sides gives

sin 3t = 3 sin t cos2 t− sin3 t = 3 sin t
(

1− sin2 t
)

− sin3
t = 3 sin t− 4 sin3 t

and hen
e

sin3 t = 3

4
sin t−

1

4
sin 3t.
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The ampli�er output, Y , is a�e
ted by interferen
e, Z.

Y = average of 4X and Z weighted by 
ondu
tan
es:

Y =
1

RO
4X+ 1

RZ
Z

1

RO
+ 1

RZ

= 3.996X + 1

1001
Z

Z is often mu
h bigger than X (e.g. mains � 230V).
RO is ampli�er output resistan
e.

Use feedba
k to reje
t interferen
e

Opamp gain = A ≈ 105⇒ X = A
(

U − Y

4

)

Y =
1

RO
4X+ 1

RZ
Z+ 1

4k
0

1

RO
+ 1

RZ
+ 1

4k

= 3.899X + 1

1026
Z

Eliminate X : Y = 4U + 1

100001026
Z

Interferen
e redu
ed by the loop gain ≈ 105 .

�Interferen
e� in
ludes any external in�uen
e that

may a�e
t the output.

E.g. the me
hani
al load 
hanging on a motor or

an opened window in a heating system.
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Gain is

Y

X
= A

1+AB
= 1

A−1+B
≈ 1

B

If multiplying by B is easier than dividing by B, use

feedba
k to multiply by

1

B

.

Division Cir
uit

Multiplier 
ir
uit is quite easy to make: T = P ×Q

Use in feedba
k loop to give Y = X

P

P must be +ve to ensure negative feedba
k.

Phase Lo
k Loop

Easy to make a voltage 
ontrolled

os
illator with fO = k × v

Phase 
omparator output is v ∝
∫

(fIN − fO) dt so v in
reases whenever

fO < fIN and de
reases when fO > fIN . When v rea
hes equilibrium, we

must have fO = fIN so v = 1

k
× fIN .

We have generated a voltage proportional to the input frequen
y.

Used in FM radios and in many other 
ir
uits.
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The biggest problem of feedba
k systems is the

possibility of instability.

Gain is

Y

X
= A

1+AB

. We have four 
ases:

AB > 0 Normal:

Y

X
≈ 1

B
< A

−1 < AB < 0 In
reased Gain:

Y

X
> A

AB = −1 Y

X
= ∞

AB < −1 Usually saturates or os
illates if AB > 0 at DC

Delays are Death

For a sine wave, a delay anywhere within the loop of

half a period (e.g. 0.5 ms for 1 kHz) is the same as

multiplying by −1. At this frequen
y the loop gain,

AB, is large and negative so the system be
omes

unstable and os
illates.

Quite a 
ommon problem: steering a boat, walking

when drunk, balan
ing a sti
k.

© S
ien
e made simple
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Why negative feedba
k is wonderful:

• The pre
ise value of A does not matter as long as it is big enough

be
ause the gain is determined by the feedba
k, B.

• It makes no di�eren
e if A varies with time or with signal amplitude

(i.e. A is non-linear).

• The e�e
t of external interferen
e at the output is redu
ed by the

loop

gain, AB.

• If making a gain B is easy, you 
an use feedba
k to make B−1

.

The one thing that 
an go wrong:

• Phase lags or delays 
an make a feedba
k system unstable

(os
illate).

• Must make sure that as frequen
y in
reases, the loop gain falls

below 1 before the phase shift rea
hes −180◦.
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The 
hara
teristi
 of a 
omponent is a

plot of I against V using the passive

sign 
onvention.

All our 
omponents have had

straight-line 
hara
teristi
s.

An ideal diode allows 
urrent to �ow in one

dire
tion only.

Its 
hara
teristi
 is not a straight line, but is

made from two straight line segments:

pie
ewise-linear . Ea
h segment is a mode of

operation.

Ea
h mode applies only when a parti
ular 
ondition is true:

Mode Condition Equation

Condu
ting (or �forward bias� or �on�) I > 0 V = 0

Non-
ondu
ting (or �reverse bias� or �o��) V < 0 I = 0
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To analyse a 
ir
uit with a diode in it, you �rst guess whi
h mode it is

operating in, solve the 
ir
uit and then 
he
k the 
ondition.

If you guessed wrongly, the 
ondition will not be met.

Mode Condition Equation

Condu
ting I > 0 VD = 0

Non-
ondu
ting VD < 0 I = 0

Voltage a
ross diode is VD = U −X.

Current through diode is I = X
2
mA.

Assume Condu
ting Mode ⇒ VD = 0
VD = 0⇒ X = U = −6⇒ I = −3

but 
ondition is I > 0 so bad guess

Assume Non-
ondu
ting Mode ⇒ I = 0
I = 0⇒ X = 2I = 0⇒ VD = U −X = −6


ondition is VD < 0 so good guess

Current �ows from anode to 
athode.
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How does X 
hange with U ?

Voltage a
ross diode is VD = Y − 3.

Current through diode is ID = X−Y
1

mA.

Assume Condu
ting Mode ⇒ Y = 3

KCL:

X−U
4

+ X−3

1
+ X

4
= 0

⇒ X = 1

6
U + 2

ID = X−3

1
= 1

6
U − 1

ID > 0 ⇔ U > 6

Assume Non-
ondu
ting Mode

⇒ ID = 0

Potential Div: X = Y = 1

2
U

VD = Y − 3 = 1

2
U − 3

VD < 0 ⇔ U < 6
0 5 10

0

2

4

U (Volts)

Diode swit
hes between regions where the graphs interse
t (U = 6).

At this point both the diode equations, VD = 0 and ID = 0, are true.
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Swit
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⊲ Bridge Re
ti�er

Non-Ideal Diode

Halfwave Re
ti�er

Pre
ision Halfwave

Re
ti�er

Summary

E1.1 Analysis of Cir
uits (2017-10117) Nonlinear Components: 8 � 5 / 9

Bridge Re
ti�er: 4 diodes:

D1 and D2 both point towards node X.

D3 and D4 both point away from ground.

The input voltage is U = B −A.

Case 1: U > 0. D1,D4 on ⇒ X = U

Che
k D1, D4: I1 = I4 = I = U
100

> 0

Che
k D2, D3: V2 = V3 = −U < 0

All diodes OK

Case 2: U < 0. D2,D3 on ⇒ X = −U

Che
k D2, D3: I2,3 = I = −U
100

> 0

Che
k D1, D4: V1 = V4 = U < 0

All diodes OK

X is always equal to |U |: this is an absolute

value 
ir
uit.

If U is a sine wave, then X is a full-wave

re
ti�ed sine wave with twi
e the frequen
y.

Note: In,Vn apply to diode n

0 5 10 15
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0

1

Time

0 5 10 15
-1

0

1

Time
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ti�er

Pre
ision Halfwave

Re
ti�er

Summary

E1.1 Analysis of Cir
uits (2017-10117) Nonlinear Components: 8 � 6 / 9

An ideal diode allows has V = 0

whenever it is �on�.

A real diode has a voltage drop that depends approximately logarithmi
ally

on the 
urrent: it in
reases by about 0.1V for every 50-fold in
rease in


urrent.

For a wide range of 
urrents we 
an treat V as almost 
onstant:

(a) For low-
urrent 
ir
uits (e.g I < 20mA): V ≃ 0.7V.

(b) For high-
urrent 
ir
uits: V ≃ 1.0V.

The two regions of operation are now:

Region Condition Equation

Condu
ting Mode (�on�) I > 0 V = 0.7

Non-
ondu
ting Mode (�o��) V < 0.7 I = 0
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ti�er
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ti�er

Pre
ision Halfwave

Re
ti�er

Summary

E1.1 Analysis of Cir
uits (2017-10117) Nonlinear Components: 8 � 7 / 9

A halfwave re
ti�er aims for X = max(U, 0)

(a) U > 0.7

Diode on, X = U − 0.7, I = U−0.7
2 k

> 0

(b) U < 0.7

Diode o�, I = 0, X = 0, VD = U < 0.7

We a
tually have X = max(U − 0.7, 0)

(1) u(t) = 20 sinωt

The 0.7V drop makes little

di�eren
e.

(2) u(t) = sinωt

The 0.7V drop makes a big

di�eren
e.
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Components

Ideal Diode

Operating modes

Swit
hing Point
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ti�er

Non-Ideal Diode

Halfwave Re
ti�er

⊲

Pre
ision Halfwave

Re
ti�er

Summary

E1.1 Analysis of Cir
uits (2017-10117) Nonlinear Components: 8 � 8 / 9

Both op-amps have negative feedba
k, so A = B = 0.

Se
ond op-amp is an inverting ampli�er so X = −Y .

Case 1: U > 0. D2 on ⇒ W = Y − 0.7

KCL � A:

0−U
10

+ 0−Y
10

= 0
⇒ Y = −U

KCL � Y:

Y−0

10
+ Y−0

10
+ I2 = 0

⇒ I2 = U
5
> 0

Che
k D1: V1 = −U − 0.7 < 0.7

Both diodes OK

Output: X = −Y = U

Case 2: U < 0. D1 on ⇒ W = 0.7

KCL � Y:

Y−0

10
+ Y−0

10
= 0 ⇒ Y = 0

KCL � A:

0−U
10

+ 0−0

10
+−I1 = 0

⇒ I1 = − U
10

> 0

Note: In,Vn apply to diode n

So X = max(U, 0)

Putting diodes in a feedba
k

loop allows their voltage

drops to be eliminated.

Che
k D2: V2 = Y −W = −0.7 < 0.7

Both diodes OK

Output: X = −Y = 0
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8: Nonlinear

Components

Ideal Diode

Operating modes

Swit
hing Point

Bridge Re
ti�er

Non-Ideal Diode

Halfwave Re
ti�er

Pre
ision Halfwave

Re
ti�er

⊲ Summary

E1.1 Analysis of Cir
uits (2017-10117) Nonlinear Components: 8 � 9 / 9

• Beware: a nonlinear 
ir
uit does not obey superposition

• Ideal diode:

◦ Two regions of operation:

⊲ Condu
ting Mode ( = �on�): V = 0 and I > 0
⊲ Non-
ondu
ting Mode ( = �o��): I = 0 and V < 0

• Solving a diode 
ir
uit:

◦ (a) Guess region

◦ (b) Solve 
ir
uit: assuming V = 0 or I = 0
◦ (
) Che
k 
ondition: either I > 0 or V < 0

• Real diode: V ≃ 0.7 in Condu
ting Mode (≃ 1.0 for high 
urrents)

• Fullwave and halfwave re
ti�er 
ir
uits

• Pre
ision Re
ti�er Cir
uit

◦ Use an opamp to eliminate the 0.7V diode drop.

For further details see Irwin Ch 17.
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Capa
itors

9: Capa
itors and

Indu
tors

⊲ Capa
itors

Types of Capa
itor

Indu
tors

Passive Components

Series and Parallel

Indu
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tors: 9 � 2 / 12

A 
apa
itor is formed from two 
ondu
ting plates separated by a thin

insulating layer.

If a 
urrent i �ows, positive 
hange, q, will

a

umulate on the upper plate. To preserve


harge neutrality, a balan
ing negative 
harge

will be present on the lower plate.

There will be a potential energy di�eren
e (or voltage v) between the plates

proportional to q.

v = d
Aǫ

q where A is the area of the plates, d is their separation and ǫ is the

permittivity of the insulating layer (ǫ0 = 8.85 pF/m for a va
uum).

The quantity C = Aǫ
d

is the 
apa
itan
e and is measured in Farads (F),

hen
e q = Cv.

The 
urrent, i, is the rate of 
harge on the plate, hen
e the


apa
itor equation: i = dq
dt

= C dv
dt

.
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E1.1 Analysis of Cir
uits (2017-10110) Capa
itors and Indu
tors: 9 � 3 / 12

Capa
itor symbol represents the two separated

plates. Capa
itor types are distinguished by the

material used as the insulator.

Polystyrene: Two sheets of foil separated by a

thin plasti
 �lm and rolled up to save spa
e.

Values: 10 pF to 1 nF.

Cerami
: Alternate layers of metal and 
erami


(a few µm thi
k). Values: 1 nF to 1µF.

Ele
trolyti
: Two sheets of aluminium foil

separated by paper soaked in 
ondu
ting

ele
trolyte. The insulator is a thin oxide layer

on one of the foils. Values: 1µF to 10mF.

Ele
trolyti
 
apa
itors are polarised: the foil with the oxide layer must

always be at a positive voltage relative to the other (else explosion).

Negative terminal indi
ated by a 
urved plate in symbol or �-�.
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E1.1 Analysis of Cir
uits (2017-10110) Capa
itors and Indu
tors: 9 � 4 / 12

Indu
tors are formed from 
oils of wire, often

around a steel or ferrite 
ore.

The magneti
 �ux within the 
oil is Φ = µNA
l

i where N is the number of

turns, A is the 
ross-se
tional area of the 
oil and l is the length of the 
oil

(around the toroid).

µ is a property of the material that the 
ore is made from and is 
alled its

permeability . For free spa
e (or air): µ0 = 4π × 10−7 = 1.26 µH/m, for

steel, µ ≈ 4000µ0 = 5mH/m.

From Faraday's law: v = N dΦ
dt

= µN2A
l

di
dt

= L di
dt

.

We measure the indu
tan
e, L = µN2A
l

, in Henrys (H).
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⊲
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uits (2017-10110) Capa
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We 
an des
ribe all three types of passive 
omponent by the relationship

between V and I using, in ea
h 
ase, the passive sign 
onvention.

Resistor: v = Ri

Indu
tor: v = L di
dt

Capa
itor: i = C dv
dt

Notes: (1) There are no minus signs anywhere whatever you were taught at

s
hool.

(2) We use lower 
ase, v, for time-varying voltages.
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⊲
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uits (2017-10110) Capa
itors and Indu
tors: 9 � 6 / 12

v = v1 + v2= L1
di
dt

+ L2
di
dt

= (L1 + L2)
di
dt

Same equation as a single indu
tor of value L1 + L2

di
dt

= d(i1+i2)
dt

= di1
dt

+ di2
dt

= v
L1

+ v
L2

= v
(

1
L1

+ 1
L2

)

v = 1
1

L1
+ 1

L2

di
dt

Same as a single indu
tor of value

1
1

L1
+ 1

L2

= L1L2

L1+L2

Indu
tors 
ombine just like resistors.
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⊲
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uits (2017-10110) Capa
itors and Indu
tors: 9 � 7 / 12

i = i1 + i2= C1
dv
dt

+ C2
dv
dt

= (C1 + C2)
dv
dt

Same equation as a single 
apa
itor of value C1 + C2

dv
dt

= d(v1+v2)
dt

= dv1
dt

+ dv2
dt

= i
C1

+ i
C2

= i
(

1
C1

+ 1
C2

)

i = 1
1

C1
+ 1

C2

dv
dt

Same as a single 
apa
itor of value

1
1

C1
+ 1

C2

= C1C2

C1+C2

Capa
itors 
ombine just like 
ondu
tan
es (i.e. parallel 
apa
itors add).
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⊲
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Capa
itor: i = C dv
dt

For the voltage to 
hange abruptly

dv
dt

= ∞ ⇒ i = ∞.

This never happens so ...

The voltage a
ross a 
apa
itor never 
hanges instantaneously.

Informal version: A 
apa
itor �tries� to keep its voltage 
onstant.

Indu
tor: v = L di
dt

For the 
urrent to 
hange abruptly

di
dt

= ∞ ⇒ v = ∞.

This never happens so ...

The 
urrent through an indu
tor never 
hanges instantaneously.

Informal version: An indu
tor �tries� to keep its 
urrent 
onstant.
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⊲
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For a 
apa
itor i = C dv
dt

. Take the average of both sides:

1
t2−t1

∫ t2

t1
idt = 1

t2−t1

∫ t2

t1
C dv

dt
dt= C

t2−t1

∫ v(t2)

v(t1)
dv

= C
t2−t1

[v]
v(t2)
v(t1)

= C
t2−t1

(v(t2)− v(t1))

(1) If v(t1) = v(t2) then the average


urrent exa
tly equals zero.

(2) If v is bounded then the average 
urrent

→ 0 as (t2 − t1) → ∞.

The average 
urrent through a 
apa
itor is zero and, likewise, the average

voltage a
ross an indu
tor is zero. The 
ir
uit symbols remind you of this.

�Average� 
an either be over an exa
t number of periods of a repetitive

waveform or else the long-term average (provided v and i remain bounded).

�v is bounded� means |v| always stays less than a prede�ned maximum

value.
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[Do not memorize this 
ir
uit℄

A bu
k 
onverter 
onverts a high

voltage, V , into a lower one, Y .

The swit
h, S, 
loses for a fra
tion a

of the time. a is the duty 
y
le and

is

1
3 in this example.

When S is 
losed, x = v, and a


urrent iL �ows.

When S opens, the 
urrent iL 
annot


hange instantly and so it must

�ow through the diode (we

assume the diode is ideal).

The average value of x is aV ⇒ the average value of y must also be aV .

The average 
urrent through R is

aV
R

so, sin
e the average 
urrent through

C must be zero, the average 
urrent iL must also be

aV
R

.

C dy
dt

= iL − iR ⇒ if C is large, then the variations in y will be very small.



Power and Energy

9: Capa
itors and

Indu
tors

Capa
itors

Types of Capa
itor

Indu
tors

Passive Components

Series and Parallel

Indu
tors

Series and Parallel

Capa
itors

Current/Voltage

Continuity

Average

Current/Voltage

Bu
k Converter

⊲ Power and Energy

Summary
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tors: 9 � 11 / 12

Ele
tri
al power absorbed by any 
omponent at the instant t is v(t)× i(t).

So total energy absorbed between times t1 and t2 is W =
∫ t2

t=t1
vi dt.

For a 
apa
itor i = C dv
dt

, so

W = C
∫ t2

t=t1
v dv
dt
dt= C

∫ v(t2)

v=v(t1)
vdv

= C
[

1
2v

2
]v(t2)

v(t1)
= 1

2C
(

v2(t2)− v2(t1)
)

If v(t1) = v(t2) then there has been no nett

energy absorbed: all the energy absorbed

when the voltage rises is returned to the


ir
uit when it falls.

The energy stored in a 
apa
itor is

1
2Cv2 and likewise in an indu
tor

1
2Li

2

.

If v and i remain bounded, then the average power absorbed by a 
apa
itor

or indu
tor is always zero.



Summary

9: Capa
itors and

Indu
tors

Capa
itors

Types of Capa
itor

Indu
tors

Passive Components

Series and Parallel

Indu
tors

Series and Parallel

Capa
itors

Current/Voltage

Continuity

Average

Current/Voltage

Bu
k Converter

Power and Energy

⊲ Summary

E1.1 Analysis of Cir
uits (2017-10110) Capa
itors and Indu
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• Capa
itor:

◦ i = C dv
dt

◦ parallel 
apa
itors add in value

◦ average i is zero, v never 
hanges instantaneously.

◦ average power absorbed is zero

• Indu
tor:

◦ v = L di
dt

◦ series indu
tors add in value (like resistors)

◦ average v is zero, i never 
hanges instantaneously.

◦ average power absorbed is zero

For further details see Hayt Ch 7 or Irwin Ch 6.
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For indu
tors and 
apa
itors i = C dv
dt

and v = L di
dt

so we need to

di�erentiate i(t) and v(t) when analysing 
ir
uits 
ontaining them.

Usually di�erentiation 
hanges the

shape of a waveform.

For bounded waveforms there is

only one ex
eption:

0 1 2 3 4
-1

0

1

t

0 1 2 3 4
-5

0

5

t

v(t) = sin t ⇒ dv
dt

= cos t

same shape but with a time shift.

sin t 
ompletes one full period every

time t in
reases by 2π.

0 5 10 15
-1

0

1

t

v(
t)

0 5 10 15
-1

0

1

t

dv
/d

t

sin 2πft makes f 
omplete repetitions every time t in
reases by 1; this

gives a frequen
y of f 
y
les per se
ond, or f Hz.

We often use the angular frequen
y , ω = 2πf instead.

ω is measured in radians per se
ond. E.g. 50Hz ≃ 314 rad.s−1

.
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A useful way to think of a 
osine wave is as the

proje
tion of a rotating rod onto the horizontal axis.

For a unit-length rod, the proje
tion has length cos θ.

If the rod is rotating at a speed of f revolutions per

se
ond, then θ in
reases uniformly with time:

θ = 2πft.

The only di�eren
e between cos and sin is the starting position of the rod:

0 5 10 15
-1

0

1

t

v = cos 2πft

0 5 10 15
-1

0

1

t

v = sin 2πft = cos
(

2πft− π
2

)

sin 2πft lags cos 2πft by 90◦ (or

π
2

radians) be
ause its peaks o

urs

1

4

of

a 
y
le later (equivalently cos leads sin) .
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If the rod has length A and starts at an angle φ then the proje
tion onto

the horizontal axis is

A cos (2πft+ φ)
= A cosφ cos 2πft−A sinφ sin 2πft
= X cos 2πft− Y sin 2πft

At time t = 0, the tip of the rod has 
oordinates

(X, Y ) = (A cosφ, A sinφ).

If we think of the plane as an Argand Diagram (or 
omplex plane), then the


omplex number X + jY 
orresponding to the tip of the rod at t = 0 is


alled a phasor .

The magnitude of the phasor, A =
√
X2 + Y 2

, gives the amplitude (peak

value) of the sine wave.

The argument of the phasor, φ = arctan Y
X

, gives the phase shift relative

to cos 2πft.

If φ > 0, it is leading and if φ < 0, it is lagging relative to cos 2πft.
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V = 1, f = 50Hz
v(t) = cos 2πft

0 0.02 0.04 0.06
-1

0

1

t

V = −j

v(t) = sin 2πft
0 0.02 0.04 0.06

-1

0

1

t

V = −1− 0.5j = 1.12∠− 153◦

v(t) = − cos 2πft+ 0.5 sin 2πft
= 1.12 cos (2πft− 2.68)

V = X + jY

v(t) = X cos 2πft− Y sin 2πft

Beware minus sign.

V = A∠φ = Aejφ

v(t) = A cos (2πft+ φ)

A phasor represents an entire waveform (en
ompassing all time) as a single


omplex number. We assume the frequen
y, f , is known.

A phasor is not time-varying, so we use a 
apital letter: V .

A waveform is time-varying, so we use a small letter: v(t).

Casio: Pol(X,Y ) → A, φ, Rec(A, φ) → X,Y . Saved → X & Y mems.
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E1.1 Analysis of Cir
uits (2017-10213) Phasors: 10 � note 1 of slide 5

A phasor is a 
omplex number, V , that uniquely de�nes a waveform, v(t), via the mapping V =

Aejφ ←→ v(t) = A cos (2πft+ φ). It is sometimes 
onvenient to give an algebrai
 formula for this.

For the dire
tion V −→ v(t) the mapping is easy:

v(t) = ℜ
(

V ej2πft
)

= 1
2
(V + V ∗) cos 2πft+ 1

2
j (V − V ∗) sin 2πft.

The reverse mapping, V ←− v(t) is a bit more 
ompli
ated and we use a te
hnique that you will also

use in the Maths of Fourier transforms. The mapping is given by

V = 2f

∫ 1

f

0
v(t)e−j2πftdt.

To 
onfrm that this is true, we 
an substitute v(t) = A cos (2πft+ φ) and do the integration:

2f

∫ 1

f

0
v(t)e−j2πftdt = Af

∫ 1

f

0

(

ej(2πft+jφ + e−j2πft−jφ
)

e−j2πftdt

= Af

∫ 1

f

0

(

ejφ + e−j4πft−jφ
)

dt = Aejφ +Afe−jφ

∫ 1

f

0
e−j4πftdt

= Aejφ +
Afe−jφ

−j4πf

[

e−j4πft
] 1

f

0
= Aejφ +

Afe−jφ

−j4πf

(

e−j4π
− 1

)

= Aejφ
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Phasors

V = P + jQ

Waveforms

v(t) = P cosωt−Q sinωt

where ω = 2πf .

aV a× v(t) = aP cosωt− aQ sinωt

V1 + V2 v1(t) + v2(t)

Adding or s
aling is the same for waveforms and phasors.

V̇ = (−ωQ) + j (ωP )
= jω (P + jQ)
= jωV

dv
dt

= −ωP sinωt− ωQ cosωt
= (−ωQ) cosωt− (ωP ) sinωt

Di�erentiating waveforms 
orresponds to multiplying

phasors by jω.

Rotate anti-
lo
kwise 90◦ and s
ale by ω = 2πf .
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Resistor:

v(t) = Ri(t) ⇒ V = RI ⇒ V
I
= R

Indu
tor:

v(t) = L di
dt

⇒ V = jωLI ⇒ V
I
= jωL

Capa
itor:

i(t) = C dv
dt

⇒ I = jωCV ⇒ V
I
= 1

jωC

For all three 
omponents, phasors obey Ohm's law if we use the 
omplex

impedan
es jωL and

1

jωC
as the �resistan
e� of an indu
tor or 
apa
itor.

If all sour
es in a 
ir
uit are sine waves having the same frequen
y, we 
an

do 
ir
uit analysis exa
tly as before by using 
omplex impedan
es.
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Given v = 10 sinωt where ω = 2π × 1000, �nd

vC(t).

(1) Find 
apa
itor 
omplex impedan
e

Z = 1

jωC
= 1

6.28j×10−4 = −1592j

(2) Solve 
ir
uit with phasors

VC = V × Z
R+Z

= −10j × −1592j
1000−1592j

= −4.5− 7.2j = 8.47∠− 122◦

vC = 8.47 cos (ωt− 122◦)
0 0.5 1 1.5 2

-10

0

10

t (ms)

C
R v

v
Cv

R

(3) Draw a phasor diagram showing KVL:

V = −10j
VC = −4.5− 7.2j
VR = V − VC = 4.5− 2.8j = 5.3∠− 32◦

Phasors add like ve
tors
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uits (2017-10213) Phasors: 10 � note 1 of slide 8

To solve the problem form the previous slide without using phasors, we de�ne i to be the 
urrent �owing


lo
kwise and use the 
apa
itor equation i = C
dvC
dt

.

From KVL, we have v = vR + vC = iR+ vC .

Di�erentiating and applying the 
apa
itor equation gives

dv
dt

= 10ω cosωt = R di
dt

+ 1
C
i.

We need to �nd the parti
ular integral for the above equation. To do so, we guess that the answer will

be of the form i = A cosωt+B sinωt and substitute it into the equation (multiplied by C).

10Cω cosωt = RC (−Aω sinωt+Bω cosωt) + (A cosωt+B sinωt)

= (A+RCBω) cosωt+ (B −RCAω) sinωt

whi
h gives two siultaneous equations: A + RCωB = 10Cω and −RCωA + B = 0. Substituting

values for R, C and ω gives A+0.628B = 0.00628 and −0.628A+B = 0. Solving these simultaneous

equations gives A = 4.5mA and B = 2.8mA.

The resistor voltage is therefore vR = iR = 4.5 cosωt + 2.8 sinωt and therefore, from KVL, the


apa
itor votage is vC = v − vR = −4.5 cosωt+ 7.2 sinωt.

Thus we get the same answer as using phasors but with more work even for a simple 
ir
uit like this.

For more 
ompli
ated 
ir
uits the di�eren
e is mu
h mu
h bigger.
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Capa
itors: i = C dv
dt

⇒ I leads V

Indu
tors: v = L di
dt

⇒ V leads I

Mnemoni
: CIVIL = �In a 
apa
itor I lead V but V leads I in an indu
tor�.

COMPLEX ARITHMETIC TRICKS:

(1) j × j = −j ×−j = −1

(2)

1

j
= −j

(3) a+ jb = r∠θ = rejθ

where r =
√
a2 + b2 and θ = arctan b

a

(±180◦ if a < 0)

(4) r∠θ = rejθ = (r cos θ) + j (r sin θ)

(5) a∠θ × b∠φ = ab∠ (θ + φ) and a∠θ
b∠φ

= a
b
∠ (θ − φ).

Multipli
ation and division are mu
h easier in polar form.

(6) All s
ienti�
 
al
ulators will 
onvert re
tangular to/from polar form.

Casio fx-991 (available in all exams ex
ept Maths) will do 
omplex

arithmeti
 (+,−,×,÷, x2, 1

x
, |x|, x∗) in CMPLX mode.

Learn how to use this: it will save lots of time and errors.
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For any network (resistors+
apa
itors+indu
tors):

(1) Impedan
e = Resistan
e + j× Rea
tan
e

Z = R+ jX (Ω)

|Z|2 = R2 +X2
∠Z = arctan X

R

(2) Admittan
e =

1

Impedance

= Condu
tan
e + j× Sus
eptan
e

Y = 1

Z
= G+ jB Siemens (S)

|Y |2 = 1

|Z|2
= G2 +B2

∠Y = −∠Z = arctan B
G

Note:

Y = G+ jB = 1

Z
= 1

R+jX
= R

R2+X2 + j −X
R2+X2

So G = R
R2+X2 = R

|Z|2

B = −X
R2+X2 = −X

|Z|2

Beware: G 6= 1

R

unless X = 0.
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• Sine waves are the only bounded signals whose shape is un
hanged by

di�erentiation.

• Think of a sine wave as the proje
tion of a rotating rod onto the

horizontal (or real) axis.

◦ A phasor is a 
omplex number representing the length and position

of the rod at time t = 0.

◦ If V = a+ jb = r∠θ = rejθ, then

v(t) = a cosωt− b sinωt = r cos (ωt+ θ) = ℜ
(

V ejωt
)

◦ The angular frequen
y ω = 2πf is assumed known.

• If all sour
es in a linear 
ir
uit are sine waves having the same

frequen
y, we 
an use phasors for 
ir
uit analysis:

◦ Use 
omplex impedan
es: jωL and

1

jωC

◦ Mnemoni
: CIVIL tells you whether I leads V or vi
e versa

(�leads� means �rea
hes its peak before�).

◦ Phasors eliminate time from equations ,, 
onverts simultaneous

di�erential equations into simultaneous linear equations ,,,.

◦ Needs 
omplex numbers / but worth it.

See Hayt Ch 10 or Irwin Ch 8
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If x(t) is a sine wave, then y(t) will also be a sine

wave but with a di�erent amplitude and phase

shift. X is an input phasor and Y is the output

phasor.

The gain of the 
ir
uit is

Y
X =

1/jωC

R+1/jωC
= 1

jωRC+1

This is a 
omplex fun
tion of ω so we plot separate graphs for:

Magnitude:

∣

∣

Y
X

∣

∣ = 1
|jωRC+1| =

1√
1+(ωRC)2

Phase Shift: ∠
(

Y
X

)

= −∠ (jωRC + 1) = − arctan
(

ωRC
1

)

Magnitude Response Phase Response
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RC = 10ms

Y
X = 1

jωRC+1 = 1
0.01jω+1

0 0.5 1

-0.4

-0.2

0
X

Y
X-Y

ω=300

Real

Im
ag

ω = 50 ⇒ Y
X = 0.89∠− 27◦

ω = 100 ⇒ Y
X = 0.71∠− 45◦

ω = 300 ⇒ Y
X = 0.32∠− 72◦

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1
x

y

time (ms)

x=
bl

ue
, y

=
re

d

w = 300 rad/s, Gain = 0.32, Phase = -72°

0 100 200 300 400 500
0

0.5

1

ω (rad/s)

|Y
/X

|

0 100 200 300 400 500

-80

-60

-40

-20

0

ω (rad/s)

P
ha

se
 (

°)

The output, y(t), lags the input, x(t), by up to 90◦.
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We usually use logarithmi
 axes for frequen
y and gain (but not phase)

be
ause % di�eren
es are more signi�
ant than absolute di�eren
es.

E.g. 5 kHz versus 5.005 kHz is less signi�
ant than 10Hz versus 15Hz even

though both di�eren
es equal 5Hz.

Logarithmi
 voltage ratios are spe
i�ed in de
ibels (dB) = 20 log10
|V2|
|V1| .

Common voltage ratios:

|V2|
|V1|

0.1 0.5
√

0.5 1
√

2 2 10 100

dB −20 -6 -3 0 3 6 20 40

Note that 0 does not

exist on a log axis and

so the starting point of

the axis is arbitrary.

Note: P ∝ V 2 ⇒ de
ibel power ratios are given by 10 log10
P2

P1
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H = c (jω)r has a straight-line magnitude graph and a 
onstant phase.

Magnitude (log-log graph):

|H| = cωr ⇒ log |H| = log |c|+ r logω

This is a straight line with a slope of r.

c only a�e
ts the line's verti
al position.

If |H| is measured in de
ibels, a slope of r

is 
alled 6r dB/o
tave or 20r dB/de
ade.

Phase (log-lin graph):

∠H = ∠jr + ∠c = r × π
2 (+π if c < 0)

The phase is 
onstant ∀ω.

If c > 0, phase = 90◦× magnitude slope.

Negative c adds ±180◦ to the phase.

Note: Phase angles are modulo 360◦, i.e.

+180◦ ≡ −180◦ and 450◦ ≡ 90◦.
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An �o
tave� is a fa
tor of 2 in frequen
y; for example, 20Hz is one o
tave greater than 10Hz. Similarly

a �de
ade� is a fa
tor of 10 in frequen
y; for example, 100Hz is one de
ade greater than 10Hz.

The number of de
ades between any two frequen
ies 
an be 
al
ulated by taking log10 of the frequen
y

ratio. Thus, for the example given above, log10

(

100Hz
10Hz

)

= log10 (10) = 1 decade. A slightly more


ompli
ated example is log10

(

13 kHz
25Hz

)

= log10
(

13000
25

)

= log10 (520) = 2.716 decades so this means

that 13 kHz is 2.716 de
ades greater than 25Hz.

As we shall dis
over in this le
ture, frequen
y response graphs 
an be approximated as a series of

straight lines whose gradients are easy to 
al
ulate. In parti
ular magnitude response graphs 
an be

approximated as a series of straight lines with gradients that are integer multiples of 20 dB per de
ade

and phase response graphs 
an be approximated as a series of straight lines with gradients that are

integer multiples of 0.25π radians per de
ade. This means that if you know the magnitude or phase at

one frequen
y, you 
an 
al
ulate how mu
h it has 
hanged at any other frequen
y by multiplying the

gradient of the line by the number of de
ades by whi
h the frequen
y has 
hanged.

Cal
ulating the number of o
taves between any two frequen
ies is done in the same way ex
ept that you

must take a base-2 log. Thus between 10Hz and 100Hz is log2

(

100Hz
10Hz

)

= log10

(

100Hz
10Hz

)

÷log10 2 =

3.322 log10

(

100Hz
10Hz

)

= 3.322 octaves. Thus one de
ade is equal to 3.322 o
taves.
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Key idea: (ajω + b) ≈
{

ajω for |aω| ≫ |b|
b for |aω| ≪ |b|

Gain: H(jω) = 1
jωRC+1

Low frequen
ies (ω ≪ 1
RC ): H(jω) ≈ 1⇒ |H(jω)| ≈ 1

High frequen
ies (ω ≫ 1
RC ): H(jω) ≈ 1

jωRC⇒ |H(jω)| ≈ 1
RCω−1

Approximate the magnitude response

as two straight lines interse
ting at the


orner frequen
y, ωc =
1

RC .

At the 
orner frequen
y:

(a) the gradient 
hanges by −1 (= −6 dB/o
tave = −20 dB/de
ade).

(b) |H(jωc)| =
∣

∣

∣

1
1+j

∣

∣

∣
= 1√

2
= −3 dB (worst-
ase error).

A linear fa
tor (ajω + b) has a 
orner frequen
y of ωc =
∣

∣

b
a

∣

∣

.
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The gain of a linear 
ir
uit is always a rational polynomial in jω and is


alled the transfer fun
tion of the 
ir
uit. For example:

H(jω) = 60(jω)2+720(jω)

3(jω)3+165(jω)2+762(jω)+600
= 20jω(jω+12)

(jω+1)(jω+4)(jω+50)

Step 1: Fa
torize the polynomials

Step 2: Sort 
orner freqs: 1, 4, 12, 50

Step 3: For ω < 1 all linear fa
tors equal

their 
onstant terms:

|H| ≈ 20ω×12
1×4×50 = 1.2ω1

.

Step 4: For 1 < ω < 4, the fa
tor (jω + 1) ≈ jω so

|H| ≈ 20ω×12
ω×4×50 = 1.2ω0 = +1.58 dB.

Step 5: For 4 < ω < 12, |H| ≈ 20ω×12
ω×ω×50 = 4.8ω−1

.

Step 6: For 12 < ω < 50, |H| ≈ 20ω×ω
ω×ω×50 = 0.4ω0 = −7.96 dB.

Step 7: For ω > 50, |H| ≈ 20ω×ω
ω×ω×ω = 20ω−1

.

At ea
h 
orner frequen
y, the graph is 
ontinuous but its gradient 
hanges

abruptly by +1 (numerator fa
tor) or −1 (denominator fa
tor).
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You 
an �nd the low and high frequen
y asymptotes without fa
torizing:

H(jω) = 60(jω)2+720(jω)

3(jω)3+165(jω)2+762(jω)+600
= 20jω(jω+12)

(jω+1)(jω+4)(jω+50)

Low Frequen
y Asymptote:

From fa
tors: HLF(jω) =
20jω(12)
(1)(4)(50) = 1.2jω

Lowest power of jω on top and bottom: H (jω) ≃ 720(jω)
600 = 1.2jω

High Frequen
y Asymptote:

From fa
tors: HHF(jω) =
20jω(jω)

(jω)(jω)(jω) = 20 (jω)
−1

Highest power of jω on top and bottom: H (jω) ≃ 60(jω)2

3(jω)3
= 20 (jω)

−1
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Gain: H(jω) = 1
jωRC+1

Low frequen
ies (ω ≪ 1
RC ):

H(jω) ≈ 1⇒ ∠1 = 0

High frequen
ies (ω ≫ 1
RC ): H(jω) ≈ 1

jωRC⇒ ∠j−1 = −π
2

Approximate the phase response as

three straight lines.

By 
han
e, they interse
t 
lose to

0.1ωc and 10ωc where ωc =
1

RC .

Between 0.1ωc and 10ωc the phase 
hanges by −π
2 over two de
ades.

This gives a gradient = −π
4 radians/de
ade.

(ajω + b) in denominator

⇒ ∆gradient = ∓π
4 /de
ade at ω = 10∓1

∣

∣

b
a

∣

∣

.

The sign of ∆gradient is reversed for (a) numerator fa
tors and (b)

b
a < 0.
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Like the magnitude response, the phase response 
an be approximated by a graph that 
onsists of a

sequen
e of straight line segments that are joined at �
orners�. For this to be true, we need to plot the

phase response using a linear axis for the phase but a logarithmi
 axis for the frequen
y.

The previous slide showed the phase response of a �lter whose frequen
y response, H(z), has a single

linear fa
tor in the denominator. On the next slide this is extended to a more 
ompli
ated frequen
y

response.

Re
all that the argument of a 
omplex number is ∠ (a+ jb) = tan−1 b
a

and ∠
1

a+jb
= − tan−1 b

a

.

Therefore if the frequen
y response is H(jω) = 1
jωRC+1

, then the phase is given by ∠H(jω) =

− tan−1 ωRC whi
h is plotted as the blue 
urve. At low frequen
ies, this tends to zero (sin
e tan−1 0 =
0) and at high frequen
ies it tends to −

π
2

(sin
e tan−1 ∞ = π
2

). The magnitude response graph has

a 
orner frequen
y at ωc = 1
RC

and at this frequen
y, ∠H(jωc) = − tan−1 1 = −
π
4

.

It turns out that we 
an approximate this 
urve with three straight lines whi
h meet at two �phase

response 
orner frequen
ies� of 0.1ωc and 10ωc. Sin
e the frequen
y range 0.1ωc to 10ωc is two

de
ades (a fa
tor of 100), the gradient of the 
entral segment of the approximation must be −
π
4

radians/de
ade. This approximation is not a
tually the best possible approximation using 3 straight

lines but it is very 
lose and mu
h easier to remember that the optimum approximation.

To summarise: A linear fa
tor of (ajω + b) in the denominator will result in two 
orner frequen
ies in

the phase response at ω = 10−1
∣

∣

∣

b
a

∣

∣

∣

and 10+1
∣

∣

∣

b
a

∣

∣

∣

. At these frequen
ies, the gradient of the graph will


hange by −
π
4

and +π
4

radians/de
ade respe
tively. The signs of the gradient 
hanges will be reversed

for numerator fa
tors and reversed again if

b
a

is negative (whi
h is rare and 
an only happen in the

numerator).
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H(jω) = 60(jω)2+720(jω)

3(jω)3+165(jω)2+762(jω)+600
= 20jω(jω+12)

(jω+1)(jω+4)(jω+50)

Step 1: Fa
torize the polynomials

Step 2: List 
orner freqs: ± = num/den

ωc = {1−, 4−, 12+, 50−}

Step 3: Gradient 
hanges at 10∓1ωc.

Sign depends on num/den and sgn

(

b
a

)

:

.1−, 10+; .4−, 40+; 1.2+, 120−; 5−, 500+

Step 4: Put in as
ending order and 
al
ulate gaps as log10
ω2

ω1

de
ades:

.1− (.6) .4− (.48) 1.2+ (.62) 5− (.3) 10+ (.6) 40+ (.48) 120− (.62) 500+.

Step 5: Find phase of LF asymptote: ∠1.2jω = +π
2 .

Step 6: At ω = 0.1 gradient be
omes −π
4 rad/decade. φ is still

π
2 .

Step 7: At ω = 0.4, φ = π
2 − 0.6π

4 = 0.35π. New gradient is −π
2 .

Step 8: At ω = 1.2, φ = 0.35π − 0.48π
2 = 0.11π. New gradient is −π

4 .

Steps 9-13: Repeat for ea
h gradient 
hange. Final gradient is always 0.

At 0.1 and 10 times ea
h 
orner frequen
y, the graph is 
ontinuous but its

gradient 
hanges abruptly by ±π
4 rad/de
ade.
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E1.1 Analysis of Cir
uits (2018-10340) Frequen
y Responses: 11 � note 1 of slide 10

Like the magnitude response, the phase response 
an be approximated by a graph that 
onsists of a

sequen
e of straight line segments that are joined at �
orners�. For this to be true, we need to plot

the phase response using a linear axis for the phase but a logarithmi
 axis for the frequen
y. As we

saw on the previous slide, ea
h linear fa
tor in either the numerator or the denominator gives rise to

two 
orners in the phase response graph. At ea
h of these 
orners, the gradient of the graph 
hanges

abruptly by ±
π
4

radians/de
ade; it follows that the gradient will always be an integer multiple of

π
4

radians/de
ade.

In order to plot the phase response graph, we need to determine three things: (a) the frequen
ies of all

the 
orners, (b) the sign of the gradient 
hange at ea
h one and (
) the phase at low frequen
ies (i.e. fre-

quen
ies less than the �rst 
orner). The example response on the slide, H(jω) =
20jω(jω+12)

(jω+1)(jω+4)(jω+50)

has four linear fa
tors: one in the numerator and three in the denominator. This means we will have a

total of eight 
orners (two from ea
h linear fa
tor). Sin
e all the fa
tors have

b
a

> 0 the signs of the

gradient 
hanges will be + followed by −for the numerator fa
tor and − followed by + for the denom-

inator fa
tors. The two 
orner frequen
ies 
orresponding to a fa
tor (ajω + b) are at ω = 0.1
∣

∣

∣

b
a

∣

∣

∣

and

10
∣

∣

∣

b
a

∣

∣

∣

. So, using a supers
ript for the sign of the gradient 
hange, we get 
orners at 1.2+ and 120− for

the numerator fa
tor and at 0.1−, 0.4−, 10+, 40+, 5− and 500+ from the three denominator fa
tors.

Sorting these into as
ending order of ω gives 
orners at 0.1−, 0.4−, 1.2+, 5−, 10+, 40+, 120− and

500+.
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E1.1 Analysis of Cir
uits (2018-10340) Frequen
y Responses: 11 � note 2 of slide 10

To plot the phase response, we 
al
ulate the low frequen
y asymptote by taking the terms with the

lowest power of jω in numerator and denominator; this gives 1.2jω whi
h has a phase of +π
2
= 1.57

radians. So we begin with a horizontal line at 1.57 radians until the �rst 
orner frequen
y at ω = 0.1−

where the gradient be
omes −
π
4

. The graph will 
ontinue with this gradient until the next 
orner

frequen
y whi
h is at ω = 0.4− where the gradient will de
rease by another

π
4

to be
ome −
π
2

.

To work out the phase at the se
ond 
orner frequen
y (ω = 0.4) we 
al
ulate how mu
h the phase has


hanged between ω = 0.1 and 0.4 by multiplying the gradient of the graph (−
π
4

radians/de
ade) by

the separation of these two 
orner frequen
ies in de
ades (log10
0.4
0.1

= 0.602 de
ades). This produ
t

gives gives a phase 
hange of −0.473 radians. So the phase is 1.571 radians at ω = 0.1 and de
reases

by −0.473 to be
ome 1.098 radians at ω = 0.4.

The next 
orner is at ω = 1.2+ whi
h is log10
1.2
0.4

= 0.477 de
ades away from ω = 0.4. Sin
e the

gradient in this segment is −
π
2
= −1.571 rads/de
ade, the phase 
hange between these two frequen
ies

is −1.571× 0.477 = −0.749 radians. So the phase at ω = 1.2 is 1.098− 0.749 = 0.349 radians.

You 
ontinue like this hopping from ea
h 
orner frequen
y to the next. At ea
h 
orner frequen
y, you

know the new gradient (measured in radians/de
ade) and so you multiply this by the distan
e to the next


orner frequen
y (measured in de
ades) to get the phase 
hange between the two 
orner frequen
ies.

As a 
he
k, the gradient after the �nal 
orner frequen
y should be zero and the phase should mat
h

the phase of the high frequen
y asymptote. In this example, the high frequen
y asymptote is 20 (jω)−1

whi
h has a phase of −
π
2

. (Remember that jr has a phase of

(

π
2

)r
).
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Y
X =

R+ 1

jωC

3R+R+ 1

jωC

= jωRC+1
4jωRC+1

Corner freqs:

0.25
RC

−
, 1
RC

+

LF Asymptote: H(jω) = 1

Magnitude Response:

Gradient Changes: −20 dB/de
 at ω = 0.25
RC and +20 at ω = 1

RC

Line equations: H(jω) = (a) 1, (b)

1
4jωRC , (
)

jωRC
4jωRC = 0.25

Phase Response:

LF asymptote: φ = ∠1 = 0

Gradient 
hanges of ±π
4 /de
ade at: ω = 0.025

RC

−
, 0.1
RC

+
, 2.5
RC

+
, 10
RC

−

.

At ω = 0.1
RC , φ = 0− π

4 log10
0.1

0.025 = −π
4 × 0.602 = −0.15π
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• Frequen
y response: magnitude and phase of

Y
X as a fun
tion of ω

◦ Only applies to sine waves

◦ Use log axes for frequen
y and gain but linear for phase

⊲ De
ibels = 20 log10
V2

V1

= 10 log10
P2

P1

• Linear fa
tor (ajω + b) gives 
orner frequen
y at ω =
∣

∣

b
a

∣

∣

.

◦ Magnitude plot gradient 
hanges by ±20 dB/de
ade@ω =
∣

∣

b
a

∣

∣

.

◦ Phase gradient 
hanges in two pla
es by:

⊲ ±π
4 rad/de
ade@ω = 0.1×

∣

∣

b
a

∣

∣

⊲ ∓π
4 rad/de
ade@ω = 10×

∣

∣

b
a

∣

∣

• LF/HF asymptotes: keep only the terms with the lowest/highest power

of jω in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.
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A quadrati
 fa
tor in a transfer fun
tion is: F (jω) = a (jω)2 + b (jω) + c.

Case 1: If b2 ≥ 4ac then we 
an fa
torize it:

F (jω) = a(jω − p1)(jω − p2)

where pi =
−b±

√
b2−4ac
2a .

0.1/RC 0.3/RC 1/RC 3/RC

-40

-20

0

ω

Y
X (jω) = 1

6R2C2(jω)2+7RCjω+1

= 1
(6jωRC+1)(jωRC+1)

ωc =
0.17
RC , 1

RC = |p1| , |p2|

Case 2: If b2 < 4ac, we 
annot fa
torize with real 
oe�
ients so we leave it

as a quadrati
. Sometimes 
alled a quadrati
 resonan
e.

Any polynomial with real 
oe�
ients 
an be fa
tored into linear and

quadrati
 fa
tors ⇒ a quadrati
 fa
tor is as 
ompli
ated as it gets.



[Derivation of Transfer Fun
tion℄

E1.1 Analysis of Cir
uits (2017-10213) Resonan
e: 12 � note 1 of slide 2

KCL at V gives

V −X
2R

+ jωCV + V −Y
3R

= 0 ⇒ 3 (V −X) + 6jωRCV + 2 (V − Y ) = 0

⇒ (5 + 6jωRC)V = 3X + 2Y .

KCL at Y gives

Y −V
3R

+ jωCY = 0 ⇒ (1 + 3jωRC)Y = V .

Eliminating V beween these two equations gives

(5 + 6jωRC) (1 + 3jωRC)Y = 3X + 2Y

⇒

(

5 + 21jωRC + 18 (jωRC)2 − 2
)

Y = 3X

⇒
Y
X

= 3
3+21jωRC+18(jωRC)2

= 1
1+7jωRC+6(jωRC)2

= 1
(1+6jωRC)(1+jωRC)

.

At high frequen
ies, the impedan
e of the 
apa
itor is mu
h less than 3R so we 
an think of the 
ir
uit

as two potential dividers one after the other (i.e. the 
urrent through the 3R is negligible 
ompared

to the 
urrent throught the �rst C). The high frequen
y asymptote is therefore the produ
t of the

asymptotes for the two potential dividers whi
h gives

Y
X

≈
1

2jωRC
×

1
3jωRC

= 1
6(jωRC)2

.
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Suppose b2 < 4ac in F (jω) = a (jω)2 + b (jω) + c.

Low/High freq asymptotes: FLF(jω) = c, FHF(jω) = a (jω)2

The asymptote magnitudes 
ross at the 
orner frequen
y :

∣

∣

∣
a (jωc)

2
∣

∣

∣
= |c| ⇒ ωc =

√

c
a .

We de�ne the damping fa
tor , �zeta�, to be ζ = b
2aωc

= bωc

2c = b sgn(a)√
4ac

⇒ F (jω) = c

(

(

j ω
ωc

)2

+ 2ζ
(

j ω
ωc

)

+ 1

)

Properties to noti
e in this expression:

(a) c is just an overall s
ale fa
tor.

(b) ωc just s
ales the frequen
y axis sin
e F (jω) is a fun
tion of

ω
ωc

.

(
) The shape of the F (jω) graphs is determined entirely by ζ.

(d) The quadrati
 
annot be fa
torized ⇔ b2 < 4ac ⇔ |ζ| < 1.

(e) At ω = ωc, asymptote gain = c but F (jω) = c× 2jζ.

Alternatively, we sometimes use the quality fa
tor , Q ≈ 1
2ζ = aωc

b .
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Y
I = 1

1

R
+ 1

jωL
+jωC

= jωL
LC(jω)2+L

R
jω+1

ωc =
√

c
a = 1000, ζ = b

2aωc
= 0.083

Asymptotes: jωL and

1
jωC .

Power absorbed by resistor ∝ Y 2

. It peaks quite

sharply at ω = 1000. The resonant frequen
y, ωr,

is when the impedan
e is purely real:

at ωr = 1000, ZRLC = Y
I = R.

A system with a strong peak in power absorption

is a resonant system.
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ω = 1000 ⇒ ZL = 100j, ZC = −100j.

ZL = −ZC ⇒ IL = −IC
⇒ I = IR + IL + IC = IR = 1
⇒ Y = IRR = 600∠0◦ = 56dBV
⇒ IL = Y

ZL
= 600

100j = −6j

Large 
urrents in L and C exa
tly 
an
el out ⇒ IR = I and Z = R (real)
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ω = 2000 ⇒ ZL = 200j, ZC = −50j

Z =
(

1
R + 1

ZL
+ 1

ZC

)−1

= 66∠− 84◦

Y = I × Z = 66∠− 84◦ = 36dBV
IR = Y

R = 0.11∠− 84◦

IL = Y
ZL

= 0.33∠− 174◦, IC = 1.33∠+ 6◦

Most 
urrent now �ows through C, only 0.11 through R.
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Y
I = 1

1/R+j(ωC−1/ωL)

Bandwidth is the range of frequen
ies for

whi
h

∣

∣

Y
I

∣

∣

2

is greater than half its peak.

Also 
alled half-power bandwidth or 3dB

bandwidth.

∣

∣

Y
I

∣

∣

2
= 1

(1/R)2+(ωC−1/ωL)2

Peak is

∣

∣

Y
I (ω0)

∣

∣

2
= R2

� ω0 = 1000

At ω3dB:

∣

∣

Y
I (ω3dB)

∣

∣

2
= 1

2

∣

∣

Y
I (ω0)

∣

∣

2

1
(1/R)2+(ω3dBC−1/ω

3dB
L)2

= R2

2 ⇒ 1 +
(

ω3dBRC − R
ω3dBL

)2

= 2

ω3dBRC − R/ω3dBL = ±1 ⇒ ω2
3dBRLC ± ω3dBL−R = 0

Positive roots: ω3dB = ±L+
√
L2+4R2LC
2RLC = {920, 1086} rad/s

Bandwidth: B = 1086− 920 = 167 rad/s.

Q fa
tor ≈ ω0

B = 1
2ζ = 6. (Q = �Quality�)
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Absorbed Power =v(t)i(t):

PL and PC opposite and ≫ PR.

Stored Energy =

1
2Li

2
L + 1

2Cy2:

sloshes between L and C.

Q , ω ×W

stored

÷ PR

= ω × 1
2C |IR|2 ÷ 1

2 |I|
2
R= ωRC �ω = 1000: Y = 600,

IR = 1, IL = −6j, IC = +6j

Q , ω× peak stored energy ÷ average power loss.



[Derivation of Power and Energy Waveforms℄

E1.1 Analysis of Cir
uits (2017-10213) Resonan
e: 12 � note 1 of slide 8

The input 
urrent is a phasor I = 1 (i.e. i(t) = cosωt where ω = 1000 rad/s).

The 
omplex impedan
es are ZL = jωL = 100jΩ and ZC = 1
jωC

= −100jΩ. Using the formula for

parallel impedan
es, the total impedan
e satis�es

1
Z

= 1
600

+ 1
100j

+ 1
−100j

= 1
600

. So, at the resonant

frequen
y, the impedan
es of L and C 
an
el out and the total impedan
e is just Z = 600Ω.

The voltage phasor a
ross the three passive 
omponents is V = IZ = 1× 600 = 600V. The waveform


orresponding to this phasor is v(t) = 600 cosωt and is plotted in the upper right graph. From knowing

V , we 
an use Ohm's law to work out the individual 
urrent phasors in the three 
omponents as

IR = V
R

= 600
600

= 1, IC = V
ZC

= 600
−100j

= 6j and IL = V
ZL

= 600
100j

= −6j. The waveforms


orresponding to these three phasors are plotted in the upper left graph.

Multiplying phasors together doesn't dire
tly give the 
orre
t result and so we 
al
ulate the power

waveforms dire
tly by multiplying v(t) × i(t). For the resistor, V = 600 and IR = 1, so pR(t) =
600 cosωt× cosωt = 600 cos2 ωt = 300 + 300 cos 2ωt. For the indu
tor, V = 600 and IL = −6j, so

pR(t) = 600 cosωt × 6 sinωt = 3600 sinωt cosωt = 1800 sin 2ωt. Finally, for the 
apa
itor, V = 600

and IL = +6j, so pR(t) = 600 cosωt × −6 sinωt = −3600 sinωt cosωt = −1800 sin 2ωt. These are

plotted in the lower left graph.

The energy stored in an indu
tor is wL(t) = 1
2
Li2(t) = 1

2
× 0.1 × 36 sin2 ωt = 1.8 sin2 ωt =

0.9 (1− cos 2ωt). The energy stored in a 
apa
itor is wC(t) = 1
2
Cv2(t) = 1

2
× 10−5

× 6002 cos2 ωt =

1.8 cos2 ωt = 0.9 (1 + cos 2ωt). These are plotted in the lower right graph. The total stored energy in

the 
ir
uit is wL(t) + wC(t) = 1.8 J whi
h does not vary with time.
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Y
X =

1/jωC

R+jωL+ 1

jωC

= 1
LC(jω)2+RCjω+1

Asymptotes: 1 and

1
LC (jω)

−2

.

ωc =
√

c
a = 1000, ζ = b

2aωc
= R

200

�ωc : ZL = −ZC = 100j, I = X
R ,

∣

∣

Y
X

∣

∣ = 1
RCω = 1

2ζ , ∠
Y
X = −π

2

Magntitude Plot:

Small ζ ⇒ less loss, higher peak, smaller bandwidth.

Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Small ζ ⇒ fast phase 
hange: π over 2ζ de
ades.

∠ Y
X ≈ −π

2

(

1 + 1
ζ log10

ω
ωc

)

for 10−ζ < ω
ωc

< 10+ζ

C

R

L

100 1k 10k
-40

-20

0

20 R=20, ζ=0.1
R=5, ζ=0.03

R=60, ζ=0.3
R=120, ζ=0.6

ω (rad/s)
100 251 1k 3.98k 10k
-1

-0.5

0

R=20, ζ=0.1
R=5, ζ=0.03

R=60, ζ=0.3
R=120, ζ=0.6

ω (rad/s)

π
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Y
X = 1

LC(jω)2+RCjω+1
= 1

(j ω
ωc
)2+2ζj ω

ωc
+1

ωc =
√

c
a = 1000, ζ = b

2aωc
= bωc

2c = R
200

Y
X is a fun
tion of

ω
ωc

so ωc just s
ales frequen
y axis (= shift on log axis).

The damping fa
tor , ζ, (�zeta�) determines the shape of the peak.

Peak frequen
y:

ωp = ωc

√

1− 2ζ2

ζ ≥ 0.5 ⇒ passes under 
orner,

ζ ≥ 0.71 ⇒ no peak,

ζ ≥ 1 ⇒ 
an fa
torize 0.7 0.8 0.9 1 1.2 1.4
-10

0

10

20

30

R=20, ζ=0.1990, 14dB
R=5, ζ=0.03999, 26dB

R=60, ζ=0.3906, 5dB
R=120, ζ=0.6529, 4dB

ω (krad/s)

Gain relative to asymptote: � ωp:

1

2ζ
√

1−ζ2

� ωc:

1
2ζ ≈ Q

Three frequen
ies: ωp= peak, ωc= asymptotes 
ross, ωr= real impedan
e

For ζ < 0.3, ωp ≈ ωc ≈ ωr. All get 
alled the resonant frequen
y.

The exa
t relationship between ωp, ωc and ωr and the gain at these

frequen
ies is a�e
ted by any other 
orner frequen
ies in the response.
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• Resonan
e is a peak in energy absorption

◦ Parallel or series 
ir
uit has a real impedan
e at ωr

⊲ peak response may be at a slightly di�erent frequen
y

◦ The quality fa
tor, Q, of the resonan
e is

Q ,
ω0×stored energy

power in R
≈ ω0

3 dB bandwidth

≈ 1
2ζ

◦ 3 dB bandwidth is where power falls by

1
2 or voltage by

1√
2

◦ The stored energy sloshes between L and C

• Quadrati
 fa
tor:

(

jω
ωc

)2

+ 2ζ
(

jω
ωc

)

+ 1

◦ a (jω)2 + b (jω) + c ⇒ ωc =
√

c
a and ζ = b

2aωc
= b sgn(a)√

4ac

◦ ±40 dB/de
ade slope 
hange in magnitude response

◦ phase 
hanges rapidly by 180◦ over ω = 10∓ζωc

◦ Gain error in asymptote is

1
2ζ ≈ Q at ω0

For further details see Hayt Ch 16 or Irwin Ch 12.
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A �lter is a 
ir
uit whose gain varies with frequen
y. Often a �lter aims to

allow some frequen
ies to pass while blo
king others.

� Radio/TV: a �tuning� �lter blo
ks all frequen
ies

ex
ept the wanted 
hannel

� Loudspeaker: �
rossover� �lters send the right

frequen
ies to di�erent drive units

� Sampling: an �anti-aliasing �lter� eliminates all

frequen
ies above half the sampling rate

� Phones: Sample rate = 8 kHz : �lter

eliminates frequen
ies above 3.4 kHz.

� Computer 
ables: �lter eliminates interferen
e

[Wikipedia℄
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Y
X =

1/jωC

R+1/jωC
= 1

jωRC+1 =
1

jω
p
+1

Corner frequen
y: p =
∣

∣

b
a

∣

∣ = 1
RC

Asymptotes: 1 and

p
jω

Very low ω: Capa
itor = open 
ir
uit

Very high ω: Capa
itor short 
ir
uit

0.1p p 10p
-30

-20

-10

0

ω (rad/s)

|G
ai

n|
 (

dB
)

A low-pass �lter be
ause it allows low frequen
ies to pass but attenuates

(makes smaller) high frequen
ies.

The order of a �lter: highest power of jω in the denominator.

Almost always equals the total number of L and/or C.
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Y
X = R+1/jωC

4R+1/jωC
= jωRC+1

jω4RC+1 =
jω
q
+1

jω
p
+1

Corner frequen
ies: p = 1
4RC , q = 1

RC

Asymptotes: 1 and

1
4

Very low ω:

Capa
itor = open 
ir
uit

Resistor R unatta
hed. Gain = 1

Very high ω:

Capa
itor short 
ir
uit

0.1q p q 10q

-10

-5

0

ω

Cir
uit is potential divider with gain 20 log10
1
4 = −12 dB.
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Inverting ampli�er so

Y
X = −

3R||(R+1/jωC)
R = −

3R(R+1/jωC)
R×(3R+R+1/jωC)

= −3× R+1/jωC

4R+1/jωC
= −3× jωRC+1

jω4RC+1

Same transfer fun
tion as before ex
ept ×− 3 = +9.5 dB.

Advantages of op-amp 
r
uit:

1. Can have gain > 1.

2. Low output impedan
e - loading

does not a�e
t �lter

3. Resistive input impedan
e - does

not vary with frequen
y

0.1q p q 10q

0

5

10

ω
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Y
X = −

1/jωC

R = −
1

jωRC

Capa
itor: i = C dvC
dt

i = x
R = −C dy

dt

dy
dt = −1

RCx
∫ t

0
dy
dt dt =

−1
RC

∫ t

0
xdt

y(t) = −1
RC

∫ t

0
xdt+ y(0)

0.1 1 10
-20

0

20

ω RC

Note: if x(t) = cosωt
∫

cos(ωt)dt = 1
ω sin(ωt) ⇒ gain ∝

1
ω .

We 
an limit the LF gain to 20 dB:

Y
X = −

10R||1/jωC

R = −
10R×1/jωC

R(10R+1/jωC)

= −
10

jω10RC+1

(

ωc =
0.1
RC

)
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Y
X = R

R+1/jωC
= jωRC

jωRC+1

Corner Freq: p = 1
RC

Asymptotes: jωRC and 1

Very low ω: C open 
ir
uit: gain = 0

Very high ω: C short 
ir
uit: gain = 1

We 
an add an op-amp to give a

low-impedan
e output. Or add gain:

Z
X =

(

1 + RB

RA

)

×
jωRC

jωRC+1

0.1p p 10p

-30

-20

-10

0

ω
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Y
X = R2+jωL

1/jωC+R1+R2+jωL

= LC(jω)2+R2Cjω

LC(jω)2+(R1+R2)Cjω+1

= jωC(jωL+R2)

LC(jω)2+(R1+R2)Cjω+1

Asymptotes: jωR2C and 1

Corner frequen
ies:

+20 dB/de
 at p = R2

L = 100 rad/s
−40 dB/de
 at

q =
√

c
a = 1√

LC
= 1000 rad/s

100 1k 10k

-40

-20

0

p q

ω

Damping fa
tor: ζ = b sgn(a)√
4ac

= qb
2c = q

2 (R1 +R2)C = 0.6.

Gain error at q is

1
2ζ = Q = 0.83 = −1.6 dB (+0.04 dB due to p)

Compare with 1st order:

2nd order �lter attenuates more rapidly than a 1st order �lter.
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100 1k 10k

-40

-20

0

ω

Asymptotes:

(

jω
p

)2

and 1

KCL � Y :

Y−X
1/jωC

+ Y−Z
1/jωC

+ Y−Z
R = 0 [assume V+ = V− = Z℄

⇒ Y (1 + 2jωRC)− Z (1 + jωRC) = XjωRC

KCL � V+:

Z
mR + Z−Y

1/jωC
= 0 ⇒ Z(1 + jωmRC) = Y jωmRC

Sub Y : Z (1+jωmRC)
jωmRC (1 + 2jωRC)− Z (1 + jωRC) = XjωRC

⇒
Z
X = m(jωRC)2

m(jωRC)2+2jωRC+1
= (jω/p)2

(jω/p)2+2ζ(jω/p)+1

Corner freq: p = 1√
mRC

= 996 rad/s, ζ = 1
2Q = pRC = 1√

m
= 0.6

Sallen-Key: 2nd order �lter without indu
tors. Can easily have gain >1.

Designing: Choose m = ζ−2

; C any 
onvenient value; R = ζ
pC .
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After mu
h algebra:

Z
X =

(1+m)((2jωRC)2+1)
(2jωRC)2+4(1−m)jωRC+1

=
(1+m)((jω/p)2+1)
(jω/p)2+2ζ(jω/p)+1

p = 1
2RC = 314, ζ = 1−m = 0.1

Very low ω: C open 
ir
uit

Non-inverting amp,

Z
X = 1 +m

Very high ω: C short 
ir
uit

Non-inverting amp,

Z
X = 1 +m 200 300 500

-40

-20

0
 m+1 = 5.6dB 2ζp

ω (rad/s)

At ω = p,

(

jω
p

)2

= −1: numerator = zero resulting in in�nite attenuation.

The 3 dB not
h width is approximately 2ζp = 2(1−m)p.

Used to remove one spe
i�
 frequen
y (e.g. mains hum � 50 Hz)

Do not try to memorize this 
ir
uit
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A dimensionless gain,

VY

VX

, 
an always be written using dimensionless

impedan
e ratio terms:

ZR

ZC
= jωRC, ZL

ZR
= jωL

R ,

ZL

ZC
= −ω2LC.

Impedan
e s
aling:

S
ale all impedan
es by k:

R′ = kR, C ′ = k−1C, L′ = kL

Impedan
e ratios are un
hanged

so graph stays the same.

(k is arbitrary)

Frequen
y Shift:

S
ale rea
tive 
omponents by k:

R′ = R, C ′ = kC, L′ = kL
⇒ Z ′(k−1ω) ≡ Z(ω)

Graph shifts left by a fa
tor of k.

10 100 1k 10k

-30

-20

-10

0

ω rad/s

♠♥

k = 20

k = 5

Must s
ale all rea
tive 
omponents in the 
ir
uit by the same fa
tor.
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Change LR 
ir
uit to RC:

Change R′ = kL, C ′ = 1
kR

⇒
ZR′

ZC′

= jωR′C ′ = jωL
R = ZL

ZR

Impedan
e ratios are un
hanged

at all ω so graph stays the same.

(k is arbitrary)

Re�e
t frequen
y axis around ωm:

Change R′ = k
ωmC , C ′ = 1

ωmkR

⇒
ZR′

ZC′

(

ω2

m

ω

)

=
(

ZC

ZR
(ω)

)∗

(a) Magnitude graph �ips

1k 10k 100k 1M

-30

-20

-10

0

ω rad/s

♦♣

k = 106

k = 0.1, ωm = 20 k

(b) Phase graph �ips and negates sin
e ∠z∗ = −∠z.

(k is arbitrary)
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• The order of a �lter is the highest power of jω in the transfer fun
tion

denominator.

• A
tive �lters use op-amps and usually avoid the need for indu
tors.

◦ Sallen-Key design for high-pass and low-pass.

◦ Twin-T design for not
h �lter: gain = 0 at not
h.

• For �lters using R and C only:

◦ S
ale R and C: Substituting R′ = kR and C ′ = pC s
ales

frequen
y by (pk)
−1

.

◦ Inter
hange R and C: Substituting R′ = k
ω0C

and C ′ = 1
kω0R

�ips the frequen
y response around ω0 (∀k).

Changes a low-pass �lter to high pass and vi
e-versa.

For further details see Hayt Ch 16 or Irwin Ch 12.
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Intantaneous Power dissipated in R: p(t) = v2(t)
R

Average Power dissipated in R:

P = 1
T

∫ T

0
p(t)dt= 1

R
× 1

T

∫ T

0
v2(t)dt=

〈v2(t)〉
R〈

v2(t)
〉

is the value of v2(t) averaged over time

We de�ne the RMS Voltage (Root Mean Square): Vrms ,
√
〈v2(t)〉

The average power dissipated in R is P =
〈v2(t)〉

R
= (Vrms)

2

R

Vrms is the DC voltage that would 
ause R to dissipate the same power.

We use small letters for time-varying voltages and 
apital letters for

time-invariant values.
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Cosine Wave: v(t) = 5 cosωt. Amplitude is V = 5V.

Squared Voltage: v2(t) = V 2 cos2 ωt = V 2
(
1
2 + 1

2 cos 2ωt
)

Mean Square Voltage:

〈
v2
〉
= V 2

2 sin
e cos 2ωt averages to zero.

RMS Voltage: Vrms =
√
〈v2〉 = 1√

2
V = 3.54V= Ṽ

Note: Power engineers always use RMS voltages and 
urrents ex
lusively

and omit the �rms� subs
ript.

For example UK Mains voltage = 230 V rms = 325 V peak.

In this le
ture 
ourse only, a ~ overbar means ÷
√
2: thus Ṽ = 1√

2
V .
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Suppose voltage and 
urrent phasors are:

V = |V | ejθV ⇔ v(t) = |V | cos (ωt+ θV )

I = |I| ejθI ⇔ i(t) = |I| cos (ωt+ θI)

Power dissipated in load Z is

p(t) = v(t)i(t) = |V | |I| cos (ωt+ θV ) cos (ωt+ θI)

= |V | |I|
(
1
2 cos (2ωt+ θV + θI) +

1
2 cos (θV − θI)

)

= 1
2 |V | |I| cos (θV − θI) +

1
2 |V | |I| cos (2ωt+ θV + θI)

Average power: P = 1
2 |V | |I| cos (φ) where φ = θV − θI

=
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ cos (φ) cosφ is the power fa
tor

φ > 0 ⇔ a lagging power fa
tor (normal 
ase: Current lags Voltage)

φ < 0 ⇔ a leading power fa
tor (rare 
ase: Current leads Voltage)



[Multiplying Phasors℄

E1.1 Analysis of Cir
uits (2017-10213) AC Power: 14 � note 1 of slide 4

From the previous slide, if the phasor voltage and 
urrent are V = |V |ejθV and I = |I|ejθI , then the


orresponding waveforms are v(t) = |V | cos (ωt+ θV ) and i(t) = |I| cos (ωt+ θI ). When you multiply

these two wavefoms together you get p(t) = 1
2
|V | |I| cos (θV − θI ) +

1
2
|V | |I| cos (2ωt+ θV + θI ).

This produ
t 
ontains two 
omponents: a 
onstant, or DC, term that doesn't involve t and a se
ond

term that is a 
osine wave of frequen
y 2ω.

The time-average of the se
ond term is zero (be
ause a 
osine wave of any non-zero frequen
y goes

symmetri
ally positive and negative and so averages to zero) and so the average power is just equal

to the �rst term:

1
2
|V | |I| cos (θV − θI). It is easy to see that V × I∗ =|V |ejθV × |I|e−jθI =

|V | |I| ej(θV −θI ) = |V | |I| cos (θV − θI ) + j|V | |I| sin (θV − θI) and so the average power is the real

part of

1
2
V × I∗.

The se
ond term is a 
osine wave at a frequen
y of 2ωand so it is possible to represent this waveform,

1
2
|V | |I| cos (2ωt+ θV + θI ), as a phasor whose value is

1
2
V × I = 1

2
|V | |I| ej(θV +θI )

.

So to sum up, if you multiply together the two sinusoidal waveforms 
orresponding to phasors V and I,

you get two 
omponents: (a) a DC 
omponent of value ℜ
(

1
2
V × I∗

)

and (b) a sinusoidal 
omponent

of twi
e the frequen
y whi
h 
orresponds to the phasor

1
2
V × I.
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uits (2017-10213) AC Power: 14 � 5 / 11

If Ṽ = 1√
2
|V | ejθV and Ĩ = 1√

2
|I| ejθI

The 
omplex power absorbed by Z is S , Ṽ × Ĩ∗

where * means 
omplex 
onjugate.

Ṽ × Ĩ∗ =
∣∣∣Ṽ

∣∣∣ ejθV ×
∣∣∣Ĩ
∣∣∣ e−jθI =

∣∣∣Ṽ
∣∣∣
∣∣∣Ĩ
∣∣∣ ej(θV −θI)

=
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ ejφ =

∣∣∣Ṽ
∣∣∣
∣∣∣Ĩ
∣∣∣ cosφ+ j

∣∣∣Ṽ
∣∣∣
∣∣∣Ĩ
∣∣∣ sinφ

= P + jQ

Complex Power: S , Ṽ Ĩ∗ = P + jQ measured in Volt-Amps (VA)

Apparent Power: |S| ,
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ measured in Volt-Amps (VA)

Average Power: P , ℜ (S) measured in Watts (W)

Rea
tive Power: Q , ℑ (S) Measured in Volt-Amps Rea
tive (VAR)

Power Fa
tor: cosφ , cos
(
∠Ṽ − ∠Ĩ

)
= P

|S|

Ma
hines and transformers have 
apa
ity limits and power losses that are

independent of cosφ; their ratings are always given in apparent power.

Power Company: Costs ∝ apparent power, Revenue ∝ average power.
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For any impedan
e, Z, 
omplex power absorbed: S = Ṽ Ĩ∗ = P + jQ

Using (a) Ṽ = ĨZ (b) Ĩ × Ĩ∗ =
∣∣∣Ĩ
∣∣∣
2

we get S =
∣∣∣Ĩ
∣∣∣
2

Z =
|Ṽ |2
Z∗

Resistor: S =
∣∣∣Ĩ
∣∣∣
2

R =
|Ṽ |2
R

φ = 0

Absorbs average power, no VARs (Q = 0)

Indu
tor: S = j
∣∣∣Ĩ
∣∣∣
2

ωL = j
|Ṽ |2
ωL

φ = +90◦

No average power, Absorbs VARs (Q > 0)

Capa
itor: S = −j
|Ĩ|2
ωC

= −j
∣∣∣Ṽ

∣∣∣
2

ωC φ = −90◦

No average power, Generates VARs (Q < 0)

VARs are generated by 
apa
itors and absorbed by indu
tors

The phase, φ, of the absorbed power, S, equals the phase of Z
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Tellegen's Theorem: The 
omplex power, S, dissipated in any 
ir
uit's


omponents sums to zero.

xn = voltage at node n

Vb, Ib = voltage/
urrent in bran
h b

(obeying passive sign 
onvention)

abn ,





−1 if Vb starts from node n

+1 if Vb ends at node n

0 else

e.g. bran
h 4 goes from 2 to 3 ⇒ a4∗ = [0, −1, 1]

Bran
h voltages: Vb =
∑

n abnxn (e.g. V4 = x3 − x2)

KCL � node n:

∑
b abnIb = 0 ⇒

∑
b abnI

∗
b = 0

Tellegen:

∑
b VbI

∗
b =

∑
b

∑
n abnxnI

∗
b

=
∑

n

∑
b abnI

∗
b xn=

∑
n xn

∑
b abnI

∗
b =

∑
n xn × 0

Note:

∑
b Sb = 0 ⇒

∑
b Pb = 0 and also

∑
b Qb = 0.
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Ṽ = 230. Motor modelled as 5||7j Ω.

Ĩ = Ṽ
R
+ Ṽ

ZL

= 46− j32.9A= 56.5∠− 36◦

S = Ṽ Ĩ∗ = 10.6 + j7.6 kVA= 13∠36◦ kVA

cosφ = P
|S| = cos 36◦ = 0.81

Add parallel 
apa
itor of 300µF:

ZC = 1
jωC

= −10.6j Ω⇒ ĨC = 21.7j A

Ĩ = 46− j11.2A = 47∠− 14◦ A

SC = Ṽ Ĩ∗C = −j5 kVA

S = Ṽ Ĩ∗ = 10.6 + j2.6 kVA= 10.9∠14◦ kVA

cosφ = P
|S| = cos 14◦ = 0.97

Average power to motor, P , is 10.6 kW in both 
ases.∣∣∣Ĩ
∣∣∣, redu
ed from 56.5 ց 47A (−16%) ⇒ lower losses.

E�e
t of C: VARs = 7.6 ց 2.6 kVAR , power fa
tor = 0.81 ր 0.97.
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A transformer has ≥ 2 windings on the same magneti
 
ore.

Ampère's law:

∑
NrIr = lΦ

µA

; Faraday's law:

Vr

Nr

= dΦ
dt

.

N1 : N2 +N3 shows the turns ratio between the windings.

The • indi
ates the voltage polarity of ea
h winding.

Sin
e Φ is the same for all windings,

V1

N1

= V2

N2

= V3

N3

.

Assume µ → ∞ ⇒ N1I1 +N2I2 +N3I3 = 0

These two equations allow you to solve 
ir
uits and also

imply that

∑
Si = 0.

Spe
ial Case:

For a 2-winding transformer this simpli�es to

V2 = N2

N1

V1 and IL = −I2 = N1

N2

I1

Hen
e

V1

I1
=

(
N1

N2

)2
V2

IL
=

(
N1

N2

)2

Z

Equivalent to a re�e
ted impedan
e of

(
N1

N2

)2

Z
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Power Transmission

Suppose a power transmission 
able has 1Ω resistan
e.

100 kVA� 1 kV = 100A ⇒ Ĩ2R = 10 kW losses.

100 kVA� 100 kV = 1A ⇒ Ĩ2R = 1W losses.

Voltage Conversion

Ele
troni
 equipment requires ≤ 20V but mains voltage is 240V ∼.

Interferen
e prote
tion

Mi
rophone on long 
able is sus
eptible to interferen
e from nearby

mains 
ables. An N : 1 transformer redu
es the mi
rophone voltage

by N but redu
es interferen
e by N2

.

Isolation

There is no ele
tri
al 
onne
tion between the windings of a transformer

so 
ir
uitry (or people) on one side will not be endangered by a failure

that results in high voltages on the other side.
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• Complex Power: S = Ṽ Ĩ∗ = P + jQ where Ṽ = Vrms =
1√
2
V .

◦ For an impedan
e Z: S =
∣∣∣Ĩ
∣∣∣
2

Z =
|Ṽ |2
Z∗

◦ Apparent Power: |S| =
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ used for ma
hine ratings.

◦ Average Power: P = ℜ (S) =
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ cosφ (in Watts)

◦ Rea
tive Power: Q = ℑ (S) =
∣∣∣Ṽ

∣∣∣
∣∣∣Ĩ
∣∣∣ sinφ (in VARs)

◦ Power engineers always use Ṽ and Ĩ and omit the ~.

• Tellegen: In any 
ir
uit

∑
b Sb = 0 ⇒

∑
b Pb =

∑
b Qb = 0

• Power Fa
tor Corre
tion: add parallel C to generate extra VARs

• Ideal Transformer: Vi ∝ Ni and

∑
NiIi = 0 (implies

∑
Si = 0)

For further details see Hayt Ch 11 or Irwin Ch 9.
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To �nd y(t):

x(t) 
onstant: Nodal analysis

x(t) sinusoidal: Phasors + nodal analysis

x(t) anything else: Di�erential equation

i(t) = C dy
dt =

x−y
R ⇒ RC dy

dt + y = x

General Solution: Parti
ular Integral + Complementary Fun
tion

Parti
ular Integral: Any solution to RC dy
dt + y = x

If x(t) is pie
ewise 
onstant or sinusoidal, we will use

nodal/phasor analysis to �nd the steady state solution for y(t).

Complementary Fun
tion: Solution to RC dy
dt + y = 0

Does not depend on x(t), only on the 
ir
uit.

Solution is y(t) = Ae−
t/τ

where τ = RC is the time 
onstant of the 
ir
uit.

The amplitude, A, is determined by the initial 
onditions at t = 0.
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We will 
onsider input signals that are sinusoidal or 
onstant for a parti
ular

time interval and then suddenly 
hange in amplitude, phase or frequen
y.

Output is the sum of the steady state and a transient:

y(t) = ySS(t) + yTr(t)

Steady state, ySS(t), is the same frequen
y as the input;

use phasors + nodal analysis.

Transient is always yTr(t) = Ae−
t

τ

at ea
h 
hange.
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For t < 0, y(t) = x(t) = 1

For t ≥ 0, RC dy
dt + y = x= 4

Time Const: τ = RC = 1ms

Steady State (Parti
ular Integral)

ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Fun
tion)

yTr(t) = Ae−
t/τ

Steady State + Transient

y(t) = ySS + yTr = 4 +Ae−
t/τ

To �nd A, use 
apa
itor property:

Capa
itor voltage never 
hanges abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

y
SS

y
Tr

y

y(0+) = 4 +A and y(0−) = 1⇒ 4 +A = 1⇒ A = −3

So transient: yTr(t) = −3e−t/τ

and total y(t) = 4− 3e−t/τ

Transient amplitude ⇐ 
apa
itor voltage 
ontinuity: vC(0+) = vC(0−)



Negative exponentials

15: Transients (A)

Di�erential Equation

Pie
ewise steady

state inputs

Step Input

⊲

Negative

exponentials

Exponential Time

Delays

Indu
tor Transients

Linearity

Transient Amplitude

Capa
itor Voltage

Continuity

Summary

E1.1 Analysis of Cir
uits (2017-10110) Transients (A): 15 � 5 / 11

Positive exponentials grow to ±∞:

et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et
3e¼t

-2e½t

t

Negative exponentials de
ay to 0:

2e−t, e
−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8
-2

0

2
2e-t

e-¼t

-2e-½t

t

De
ay rate of e
−t/a

37% after 1 time 
onstant

5% after 3, <1% after 5

a 2a 3a 4a 5a
0

0.5

1

0.37

0.05 0.01

t

Gradient of e
−t/a

Gradient at t hits zero at t+ a.

True for any t.

a 2a 3a
0

0.5

1

t
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Negative exponential with a �nal

value of F .

y(t) = F + (A− F ) e−(t−TA)/τ

How long does it take to go from A to B ?

At t = TB:

y(TB) = B = F + (A− F ) e−(TB−TA)/τ

B−F
A−F = e

−(TB−TA)/τ

Hen
e TB − TA = τ ln
(

A−F
B−F

)

= τ ln
(

initial distan
e toF

�nal distan
e toF

)

Useful formula - worth remembering.
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We know i = x−y
R

y(t) = L di
dt =

L
R ×

d(x−y)
dt = L

R
dx
dt − L

R
dy
dt

⇒ L
R

dy
dt + y = L

R
dx
dt

Solution: Parti
ular Integral + Complementary Fun
tion

Parti
ular Integral: Any solution to

L
R

dy
dt + y = L

R
dx
dt

If x(t) is pie
ewise 
onstant or sinusoidal, we will use

nodal/phasor analysis to �nd the steady state solution, ySS(t).

Complementary Fun
tion: Solution to

L
R

dy
dt + y = 0

Does not depend on x(t), only on the 
ir
uit.

Solution is yTr(t) = Ae−
t/τ

where τ = L
R is the time 
onstant of the 
ir
uit.

1st order transient is always yTr(t) = Ae−
t/τ

where τ = RC or

L
R

Amplitude A ⇐ no abrupt 
hange in 
apa
itor voltage or indu
tor 
urrent.
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1st order 
ir
uit has only one C or L.

Make a Thévenin equivalent of the network


onne
ted to the terminals of C. Remember

x is a voltage sour
e but y is not.

Now v(t) = vSS(t) + vTr(t)
= vSS(t) +Ae

−t/τ

Time 
onstant is τ = RThC

where RTh is the Thévenin resistan
e.

Repla
e the 
apa
itor with a voltage sour
e

v(t); all voltages and 
urrents in the 
ir
uit

will remain un
hanged.

Linearity: y = ax+ bv = ax+ bvSS + bvTr = ySS + bvTr

All voltages and 
urrents in a 
ir
uit have the same transient (but s
aled).

The 
ir
uit's time 
onstant is τ = RThC or

L
RTh

where RTh is the

Thévenin resistan
e of the network 
onne
ted to C or L.
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Find Steady State (DC ⇒ ZL = 0)

Potential divider: ySS = 1
2x

ySS(0−) = 1, ySS(0+) = 3

Indu
tor Current Continuity

iSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+
x− y = 1mA× 1 k = 1
y(0+) = x(0+)− 1 = 5

Time Constant

Set x ≡ 0 → RTh = 2k
τ = L

RTh
= 2µs

Result

y = ySS + (y (0+)− ySS (0+)) e−t/τ

= 3 + (5− 3) e−t/τ

= 3 + 2e−t/τ
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Find Steady State (DC ⇒ ZC = ∞)

KCL � V:

v−x
4R + v

8R + v−y
2R = 0

KCL � Y:

y−v
2R + y−x

6R = 0

vSS = 3
4x, ySS = 13

16x

Capa
itor Voltage Continuity

vSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3

KCL � Y:

y−(−3)
2R + y−4

6R = 0

y(0+) = −9+4
4 = − 5

4

Time Constant

τ = RThC = 2RC (from earlier slide)

Result

y = ySS + (y (0+)− ySS (0+)) e−t/τ

= 13
4 +

(

− 5
4 − 13

4

)

e
−t/τ

= 13
4 − 18

4 e
−t/τ = 3 1

4 − 4 1
2e

−t/2RC

-RC 0 RC 2RC 3RC
-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC
-4

-2

0

2

4

t

y
Tr

y
SS

y
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• 1st order 
ir
uits: in
lude one C or one L.

◦ vC or iL never 
hange abruptly. The output, y, is not ne
essarily


ontinuous unless it equals vC .

• Cir
uit time 
onstant: τ = RThC or

L
RTh

◦ RTh is the Thévenin resistan
e seen by C or L.

◦ Same τ for all voltages and 
urrents.

• Output = Steady State + Transient

◦ Steady State: use nodal/Phasor analysis when input is pie
ewise


onstant or pie
ewise sinusoidal. The steady state has the same

frequen
y as the input signal.

◦ Transient: Find vC(0−) or iL(0−): un
hanged at t = 0+

Find y(0+) assuming sour
e of vC(0+) or iL(0+)

Amplitude never 
omplex, never depends on t.

◦ y(t) = ySS(t) + (y(0+)− ySS(0+)) e−t/τ

See Hayt Ch 8 or Irwin Ch 7.
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We will 
onsider input signals that are sinusoidal or 
onstant for a parti
ular

time interval and then suddenly 
hange in amplitude, phase or frequen
y.

Output is the sum of the steady state and a transient:

y(t) = ySS(t) + yTr(t)

Steady state, ySS(t), is the same frequen
y as the input;

use phasors + nodal analysis.

Transient is always yTr(t) = Ae−
t
τ

at ea
h 
hange.

[only one C or L℄
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For t < 0: y(t) = x(t) = 0

For t ≥ 0: x = 2 sinωt⇒ X = −2j
τ = RC = 1ms, ω = 10 krad/s

Steady State (for t ≥ 0)

Y
X = 1

jωRC+1 = 0.1∠− 84◦

Y = X × Y
X = −2j × 0.1∠− 84◦

ySS(t) = 0.2 cos (ωt− 174◦)

Steady State + Transient

y(t) = 0.2 cos (ωt− 174◦) +Ae−t/τ

Transient Amplitude

y(0+) = 0.2 cos (−174◦) +A
= −0.198 +A

-1 0 1 2 3
-2

0

2

t (ms)

-1 0 1 2 3
-0.2

0

0.2

0.4

t (ms)

y
SS

y
Tr

y

y

y(0+) = y(0−) = 0⇒ A = 0.198⇒ yTr(t) = 0.198e−t/τ

Complete Expression for y(t)
y(t) = 0.2 cos (ωt− 174◦) + 0.198e−t/τ
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For 0 ≤ t < 0.2π ms: X = −2j, ω1 = 10 k, τ = 1ms

prev page⇒ y(t) = 0.2 cos (ωt− 174◦) + 0.198e−t/τ

Steady State (for t ≥ 0.0002π = 0.63ms)

X = −3j, ω2 = 5k
Y
X = 1

jω2RC+1 = 0.2∠− 79◦

Y = X × Y
X = −3j × 0.2∠− 79◦

ySS(t) = 0.59 cos (ω2t− 169◦)

Steady State + Transient (for t ≥ 0.63ms)

y = 0.59 cos (ω2t− 169◦) +Be−(t−0.00063)/τ

Transient Amplitude (at t = 0.63ms)

y(0.00063+) = 0.59 cos (0.00063ω2 − 169◦) +B
= 0.577 +B

y(0.00063−) = 0.2 cos (0.00063ω1 − 174◦) + 0.198e−0.00063/τ = −0.092
⇒ 0.577 +B = −0.092 ⇒ B = −0.67⇒ yTr = −0.67e−(t−0.00063)/τ

Complete Expression for y(t) (for t ≥ 0.63ms)

y(t) = 0.59 cos (ω2t− 169◦)− 0.67e−(t−0.00063)/τ
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Operating the swit
h 
hanges τ :

Closed: τC = (1 k || 9 k)× C = 0.9ms

Open: τO = 9k× C = 9ms

Swit
h 
losed at t = 0.

ySS = 10× 9
10 = 9V

y(t) = 9− 9e−t/τC

y(2−) = 9− 9e−2/0.9 = 8.02

Swit
h opened at t = 2.

ySS = 0V
y(t) = 0 +Ae−(t−2)/τO

y(2+) = A = y(2−) = 8.02
y(20) = 8.02e−(20−2)/9 = 1.09
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Phasor nodal analysis:

Y
X = 5R

15R+ 10R
1+10jωRC

= 10jωRC+1
30jωRC+5 = 0.2

jω
p
+1

jω
q
+1

Corner freqen
ies: p = 1
10RC , q = 1

6RC , HF gain =

1
3

Thévenin Equivalent driving C:

VTh = 2
5X, RTh = 10R||15R = 6R, τ = 6RC

V = 2
5X × 1

6jωRC+1 =
2
5X × 1

jωτ+1

Denominator is always (jωτ + 1)

Linearity: Y = aX + bV

KCL � supernode:

(Y+V )−X
10R + Y

5R = 0⇒ 3Y + V −X = 0

Y = 1
3X − 1

3V = 1
3X − 2

15X
(

1
jωτ+1

)

= X
15

(

5jωτ+3
jωτ+1

)

Denominator of bV is un
hanged by adding aX

(1) Denominator 
orner frequen
y is always

1
τ for any transfer fun
tion in the 
ir
uit.

(2) V = 0 at ω = ∞, so sin
e Y = aX + bV , a = Y
X

∣

∣

ω=∞

(= HF-gain)

V is never dis
ontinuous so ∆Y dis
ontinuity = HF-gain×∆X dis
ontinuity
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Cal
ulate Transfer Fun
tion

KCL � V:

V−X
4R + V

8R + jωCV + V−Y
2R = 0

KCL � Y:

Y−V
2R + Y−X

6R = 0

→ Transfer Fun
tion:

Y
X = 8jωRC+13

32jωRC+16

DC gain:

13
16 , HF gain:

8
32 = 1

4 , τ = 32RC
16 = 2RC

Steady State

t < 0: ySS(t) =
13
16x(t) =

13
16 ×−4 = −3 1

4
t ≥ 0: ySS(t) =

13
16x(t) =

13
16 ×+4 = +3 1

4

Steady State + Transient (for t > 0)

t ≥ 0: y = 3 1
4 +Ae−t/τ

Dis
ontinuity Gain (= HF Gain � ω = ∞)

∆y = y(0+)− y(0−) = 1
4∆x = 1

4 × 8 = 2
(

3 1
4 +A

)

−
(

−3 1
4

)

= 2⇒ A = −4 1
2

Complete Expression

t ≥ 0: y(t) = 3 1
4 − 4 1

2e
−t/2RC
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Cal
ulate Transfer Fun
tion (Inverting Ampli�er)

Y
X = −ZF

R = − 1
R ×

4R(4R+ 1
jωC )

4R+(4R+ 1
jωC )

= −4 4jωRC+1
8jωRC+1

DC gain: −4, HF gain: −2, τ = 8RC

Steady State

t < 0: ySS(t) = −4v(t) = 0
t ≥ 0: ySS(t) = −4v(t) = −4× 1 = −4

Steady State + Transient

t ≥ 0: y = −4 +Ae−t/τ

Dis
ontinuity Gain (= HF Gain)

y(0+)− y(0−) = −2 (x(0+)− x(0−)) = −2
(−4 +A)− (0) = −2⇒ A = 2

Complete Expression

t ≥ 0: y(t) = −4 + 2e−t/8RC

0 5RC 10RC 15RC 20RC

0

0.5

1

t

0 5RC 10RC 15RC 20RC
-4

-2

0

2

t

y
Tr

y
SS

y

For opamp 
ir
uits get τ from the transfer fun
tion be
ause RTh is di�
ult to work out.
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• 1st order transients: 
ir
uits with only one C or L

• Transients arise from abrupt 
hanges in the frequen
y, phase or

amplitude of the input signal or else a swit
h 
hanging

• Output is steady state + transient

• Steady state: nodal analysis → transfer fun
tion

• Transient: Ae−t/τ

where:

◦ Two methods to �nd τ :

⊲ Thévenin seen by L or C: τ = RThC or

L
RTh

⊲ Transfer fun
tion denominator: (ajω + b) ⇒ τ = 1
ωc

= a
b

◦ Two methods to �nd A:

⊲ Continuity: ∆VC = 0 or ∆IL = 0

⊲ Dis
ontinuity gain: ∆output = HF gain ×∆input

For further details see Hayt Ch 8 or Irwin Ch 7.
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Previously assume that any 
hange in v0(t) appears instantly at vL(t).

This is not true.

If fa
t signals travel at around half the speed of light (c = 30 
m/ns).

Reason: all wires have 
apa
itan
e to ground and to neighbouring


ondu
tors and also self-indu
tan
e. It takes time to 
hange the 
urrent

through an indu
tor or voltage a
ross a 
apa
itor.

A transmission line is a wire with a uniform goemetry along its length: the


apa
itan
e and indu
tan
e of any segment is proportional to its length.

We represent as a large number of small indu
tors and 
apa
itors spa
ed

along the line.

The signal speed along a transmisison line is predi
table.
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A short se
tion of line δx long:

v(x, t) and i(x, t) depend on both

position and time.

Small δx ⇒ ignore 2nd order derivatives:

∂v(x,t)
∂t

= ∂v(x+δx,t)
∂t

, ∂v
∂t

.

Basi
 Equations

KVL: v(x, t) = V2 + v(x+ δx, t) + V1

KCL: i(x, t) = iC + i(x+ δx, t)

Capa
itor equation: C ∂v
∂t

= iC = i(x, t)− i(x+ δx, t) = − ∂i
∂x

δx

Indu
tor equation (L1 and L2 have the same 
urrent):

(L1 + L2)
∂i
∂t

= V1 + V2 = v(x, t)− v(x+ δx, t) = − ∂v
∂x

δx

Transmission Line Equations

C0
∂v
∂t

= − ∂i
∂x

L0
∂i
∂t

= − ∂v
∂x

where C0 = C
δx

is the 
apa
itan
e per unit length

(Farads/m) and L0 = L1+L2

δx

is the total

indu
tan
e per unit length (Henries/m).
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When we di�erentiate a fun
tion of two variables, we keep one of the variables �xed while di�erentiating

with respe
t to the other; this is 
alled a partial derivative and is written with a 
urly version of the

letter �d�. Thus

∂v

∂x
, lim

δx→0

v(x+ δx, t)− v(x, t)

δx
and

∂v

∂t
, lim

δt→0

v(x, t+ δt)− v(x, t)

δt
.

Higher order derivatives may be obtained by di�erentiating the partial derivatives again to give

∂2v

∂x2
,

∂

∂x

(

∂v

∂x

)

,
∂2v

∂t2
,

∂

∂t

(

∂v

∂t

)

and
∂2v

∂x∂t
,

∂

∂x

(

∂v

∂t

)

.

Provided the se
ond order partial derivatives are 
ontinuous, the order of di�erentiation doesn't matter

so that

∂2v
∂x∂t

= ∂2v
∂t∂x

.

If we take the normal Taylor series with respe
t to x, v(x + δx, t) = v(x, t) +
∂v(x,t)

∂x
δx + O

(

δx2
)

,

and di�erentiate ea
h term with respe
t to t, we get

∂v(x+ δx, t)

∂t
=

∂v(x, t)

∂t
+

∂2v(x, t)

∂t∂x
δx+O

(

δx2
)

.

If δx → 0, then we get

∂v(x+δx, t)
∂t

→
∂v(x,t)

∂t

as assumed on the previous slide.
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This note provides slightly more detail about how we derive the transmission line equations. By ex-

panding v(x+ δx, t) and i(x+ δx, t) as Taylor Series in x, we 
an write

v(x+ δx, t) = v(x, t) + δx
∂v

∂x
(x, t) +O(δx2) and i(x+ δx, t) = i(x, t) + δx

∂i

∂x
(x, t) +O(δx2).

From the diagram on the previous page, the voltage a
ross the 
apa
itor is v(x + δx, t) and so the


apa
itor equation is

C
∂v

∂t
(x+ δx, t) = i(x, t)− i(x+ δx, t).

Substituting in the Taylor series expansions for v(x + δx, t) and i(x + δx, t) and also substituting

C = C0δx results in

C0δx

(

∂v

∂t
(x, t) + δx

∂2v

∂x∂t
(x, t) + O(δx2)

)

= −δx
∂i

∂x
(x, t)−O(δx2)

⇒ C0

(

∂v

∂t
(x, t) + δx

∂2v

∂x∂t
(x, t) + O(δx2)

)

= −
∂i

∂x
(x, t)−O(δx).

Finally, we let δx → 0 and so all the terms that are O(δx) or smaller disappear whi
h leaves

C0
∂v

∂t
(x, t) = −

∂i

∂x
(x, t).

The indu
tor equation, L0
∂i
∂t

= −
∂v
∂x

, 
an be derived in a similar way.
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Transmission Line Equations: C0
∂v
∂t

= − ∂i
∂x

L0
∂i
∂t

= − ∂v
∂x

General solution: v(t, x) = f(t− x
u
) + g(t+ x

u
)

i(t, x) =
f(t− x

u
)−g(t+ x

u
)

Z0

where u =
√

1
L0C0

and Z0 =
√

L0

C0

.

u is the propagation velo
ity and Z0 is the 
hara
teristi
 impedan
e.

f() and g() 
an be any di�erentiable fun
tions.

Verify by substitution:

− ∂i
∂x

= −
(

−f ′(t− x

u
)−g′(t+ x

u
)

Z0

× 1
u

)

= C0

(

f ′(t− x
u
) + g′(t+ x

u
)
)

= C0
∂v
∂t
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Suppose:

u = 15 cm/ns

and g(t) ≡ 0
⇒ v(x, t) = f

(

t− x
u

)

• At x = 0 
m [N℄,

vS(t) = f(t− 0
u
)

• At x = 45 
m [N℄,

v(45, t) = f(t− 45
u
)

0 2 4 6 8 10
Time (ns)

f(t-0/u) f(t-45/u) f(t-90/u)

f(t− 45
u
) is exa
tly the same as f(t) but delayed by

45
u

= 3 ns.

• At x = 90 
m [N℄, vR(t) = f(t− 90
u
); now delayed by 6 ns.

Waveform at x = 0 
ompletely determines the waveform everywhere else.

Snapshot at t0 = 4ns:

the waveform has just

arrived at the point

x = ut0 = 60 
m. 0 20 40 60 80
Position (cm)

f(4-x/u)t = 4 ns

f(t− x
u
) is a wave travelling forward (i.e. towards +x) along the line.
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Similarly g(t+ x
u
) is a wave travelling ba
kwards, i.e. in the −x dire
tion.

v(x, t) =
f(t− x

u
) + g(t+ x

u
)

At x = 0 
m [N℄,

vS(t) = f(t) + g(t)

At x = 45 
m [N℄, g is only 1 ns behind f and they add together.

At x = 90 
m [N℄, g starts at t = 1 and f starts at t = 6.

A verti
al line on the diagram

gives a snapshot of the entire

line at a time instant t.

f and g �rst meet at t = 3.5

and x = 52.5.

Magi
ally, f and g pass

through ea
h other entirely

unaltered.
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De�ne fx(t) = f
(

t− x
u

)

and gx(t) = g
(

t+ x
u

)

to be the forward and

ba
kward waveforms at any point, x.

i is always

measured in the

+ve x dire
tion.

Then vx(t) = fx(t) + gx(t) and ix(t) = Z−1
0 (fx(t)− gx(t)).

Note: Knowing the waveform fx(t) or gx(t) at any position x, tells you it at

all other positions: fy(t) = fx
(

t− y−x
u

)

and gy(t) = gx
(

t+ y−x
u

)

.

Power Flow

The power transferred into the shaded region a
ross the boundary at x is

Px(t) = vx(t)ix(t) = Z−1
0 (fx(t) + gx(t)) (fx(t)− gx(t))

=
f2

x
(t)

Z0

−
g2

x
(t)

Z0

fx 
arries power into shaded area and gx 
arries power out independently.

Power travels in the same dire
tion as the wave.

The same power as would be absorbed by a [�
ti
ious℄ resistor of value Z0.
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vx = fx + gx
ix = Z−1

0 (fx − gx)

From Ohm's law at x = L, we have vL(t) = iL(t)RL

Hen
e (fL(t) + gL(t)) = Z−1
0 (fL(t)− gL(t))RL

From this: gL (t) = RL−Z0

RL+Z0

× fL (t)

We de�ne the re�e
tion 
oe�
ient: ρL = gL(t)
fL(t) =

RL−Z0

RL+Z0

= +0.5

Substituting gL (t) = ρLfL (t) gives
vL(t) = (1 + ρL) fL(t) and iL(t) = (1− ρL)Z

−1
0 fL(t)

0 2 4 6 8 10 12 14 16 18
Time (ns)

v
0
(t)

0 2 4 6 8 10 12 14 16 18
Time (ns)

i
0
(t)

At sour
e end: g0(t) = ρLf0
(

t− 2L
u

)

i.e. delayed by

2L
u

= 12 ns.

Note that the re�e
ted 
urrent has been multiplied by −ρ.
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ρ = R−Z0

R+Z0

=
R

Z0
−1

R

Z0
+1

vL(t)
f(t) = 1 + ρ
iL(t)Z0

f(t) = 1− ρ 0 1 2 3 4 5
-1

0

1

RZ
0
-1

ρ

ρ depends on the ratio

R
Z0

.

R
Z0

ρ vL(t)
f(t)

iL(t)Z0

f(t) Comment

∞ +1 2 0 Open 
ir
uit: vL = 2f , iL ≡ 0
3 +0.5 1.5 0.5 R > Z0 ⇒ ρ > 0
1 0 1 1 Mat
hed: No re�e
tion at all

1
3 −0.5 0.5 1.5 R < Z0 ⇒ ρ < 0

0 −1 0 2 Short 
ir
uit: vL ≡ 0, iL = 2f
Z0

Note: Reverse mapping is R = vL
iL

= 1+ρ
1−ρ

× Z0

Remember: ρ ∈ {−1,+1} and in
reases with R.
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vx = fx + gx
ix = fx−gx

Z0

From Ohm's law at x = 0, we have v0(t) = vS(t)− i0(t)RS where RS is

the Thévenin resistan
e of the voltage sour
e.

Substituting v0(t) = f0 + g0 and i0(t) =
f0−g0
Z0

leads to:

f0(t) =
Z0

RS+Z0

vS(t) +
RS−Z0

RS+Z0

g0(t), τ0vS(t) + ρ0g0(t)

So f0(t) is the superposition of two terms:

(1) Input vS(t) multiplied by τ0 = Z0

RS+Z0

whi
h is the same as a

potential divider if you repla
e the line with a [�
ti
ious℄ resistor Z0.

(2) The in
oming ba
kward wave, g0(t), multiplied by a re�e
tion


oe�
ient: ρ0 = RS−Z0

RS+Z0

.

For RS = 20: τ0 = 100
20+100 = 0.83 and ρ0 = 20−100

20+100 = −0.67.
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ρ0 = − 2
3

ρL = 1
2

vx = fx + gx

Ea
h extra bit of f0 is

delayed by

2L
u

(=12 ns)

and multiplied by ρLρ0 :

f0(t) =
∑

∞

i=0 τ0ρ
i
Lρ

i
0vS

(

t− 2Li
u

)

gL(t) = ρLf0
(

t− L
u

)

v0(t) =
f0(t) + gL

(

t− L
u

)

vL(t) =
f0

(

t− L
u

)

+ gL(t)

0 5 10 15 20 25 30
Time (ns)

f
0
(t)

0 5 10 15 20 25 30
Time (ns)

g
L
(t)

0 5 10 15 20 25 30
Time (ns)

v
0
(t)

0 5 10 15 20 25 30
Time (ns)

v
L
(t)
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Integrated 
ir
uits & Printed 
ir
uit boards

High speed digital or high frequen
y analog

inter
onne
tions

Z0 ≈ 100Ω, u ≈ 15 
m/ns.

Long Cables

Coaxial 
able (�
oax�): una�a
ted by external �elds;

use for antennae and instrumentation.

Z0 = 50 or 75Ω, u ≈ 25 
m/ns.

Twisted Pairs: 
heaper and thinner than 
oax and

resistant to magneti
 �elds; use for 
omputer network

and telephone 
abling. Z0 ≈ 100Ω, u ≈ 19 
m/ns.

When do you have to bother?

Answer: long 
ables or high frequen
ies. You 
an 
ompletely ignore

transmission line e�e
ts if length ≪ u
frequency = wavelength.

• Audio (< 20 kHz) never matters.

• Computers (1GHz) usually matters.

• Radio/TV usually matters.
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For long 
oaxial or twisted pair 
ables, the �ground� wire has signi�
ant indu
tan
e and so its two ends

are not ne
essarily at the same voltage. This means that vx(t), fx(t) and gx(t) are measured relative

to the �ground� at position x as shown. It follows that potential di�eren
es like vR(t) = vA(t)− vB(t)

make sense but talking about vA(t) on its own is meaningless.

Integrated 
ir
uits and printed 
ir
uit boards normally have a low impedan
e �ground plane� 
overing

the entire 
ir
uit; in a multilayer printed 
ir
uit board this typi
ally forms one entire layer. In this 
ase

we have a single ground referen
e for the whole 
ir
uit and it now makes sense to talk about the voltage

�at� a node and to say vR(t) = vA(t).
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• Signals travel at around u ≈ 1
2c = 15 
m/ns.

Only matters for high frequen
ies or long 
ables.

• Forward and ba
kward waves travel along the line:

fx(t) = f0
(

t− x
u

)

and gx(t) = g0
(

t+ x
u

)

◦ Knowing fx and gx at any single x position tells you everything

• Voltage and 
urrent are: vx = fx + gx and ix = fx−gx
Z0

• Terminating line with R at x = L links the forward and ba
kward waves:

◦ ba
kward wave is gL = ρLfL where ρL = R−Z0

R+Z0

◦ the re�e
tion 
oe�
ient, ρL ∈ {−1,+1} and in
reases with R

◦ R = Z0 avoids re�e
tions: mat
hed termination.

◦ Re�e
tions go on for ever unless one or both ends are mat
hed.

◦ f is in�nite sum of 
opies of the input signal delayed su

essively

by the round-trip delay,

2L
u

, and multiplied by ρLρ0.
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For a transmission line: v(t, x) = f
(

t− x
u

)

+ g
(

t+ x
u

)

and

i(t, x) = Z−1
0

(

f(t− x
u
)− g(t+ x

u
)
)

We 
an use phasors to eliminate t from the equations if f() and g() are

sinusoidal with the same ω: f(t) = A cos (ωt+ φ) ⇒ F = Aejφ.

Then fx(t) = f(t− x
u
) = A cos

(

ω
(

t− x
u

)

+ φ
)

⇒ Fx = Aej(−
ω
u
x+φ)= Aejφe−j ω

u
x= F0e

−jkx

where the wavenumber is k , ω
u

.

Units: ω is �radians per se
ond�, k is �radians per metre� (note k ∝ ω).

Similarly Gx = G0e
+jkx

.

Everything is time-invariant: phasors do not depend on t.

Ni
e things about sine waves:

(1) a time delay is just a phase shift

(2) sum of delayed sine waves is another sine wave
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Time Domain Phasor Notes

f(t) = A cos (ωt+ φ) F = Aejφ F indep of t

fx(t) = f
(

t− x
u

)

= A cos
(

ωt+ φ− ω
u
x
)

Fx = Aej(φ−
ω
u
x)

= Fe−jkx

|Fx| ≡ |F |
indep of x

fy(t) = fx

(

t− (y−x)
u

)

Fy = Fxe
−jk(y−x)

Delayed by

y−x
u

gy(t) = gx

(

t+ (y−x)
u

)

Gy = Gxe
+jk(y−x)

Advan
ed by

y−x
u

vx(t) = fx(t) + gx(t) Vx = Fx +Gx

ix(t) =
fx(t)−gx(t)

Z0
Ix = Fx−Gx

Z0
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Phasors obey Ohm's law:

VL

IL
= RL = FL+GL

Z
−1
0 (FL−GL)

So GL = ρLFL where ρL = RL−Z0

RL+Z0

At any x, Gx

Fx
= GLe−jk(L−x)

FLe+jk(L−x) = ρLe
−2jk(L−x)

Ohm's law at the load determines the ratio

Gx

Fx

everywhere on the line.

Note that

∣

∣

∣

Gx

Fx

∣

∣

∣
≡ |ρL| has the same value for all x.

Vx = Fx +Gx = Fx

(

1 + ρLe
−2jk(L−x)

)

Ix = Z−1
0 (Fx −Gx) = Z−1

0 Fx

(

1− ρLe
−2jk(L−x)

)

The exponent −2jk (L− x) is the phase delay from travelling from x to L

and ba
k again (hen
e the fa
tor 2).
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Forward wave phasor: Fx = Fe−jkx

Ba
kward wave phasor: Gx = ρLFxe
−2jk(L−x) = ρLFe−2jkLe+jkx

Line Voltage phasor: Vx = Fx +Gx = Fe−jkx
(

1 + ρLe
−2jk(L−x)

)

Line Voltage Amplitude: |Vx| = |F |
∣

∣1 + ρLe
−2jk(L−x)

∣

∣

varies with x but not t

Max amplitude equals 1 + |ρL| at values of x where Fx and Gx are in phase. This o

urs

every

λ
2 away from L where λ is the wavelength, λ = 2π

k
= u

f

.

Min amplitude equals 1− |ρL| at values of x where Fx and Gx are out of phase.

Standing waves arise whenever a periodi
 wave meets its re�e
tion: e.g. ponds, musi
al

instruments, mi
rowave ovens.
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• Use phasors if forward and ba
kward waves are sinusoidal with the

same ω.

◦ fx(t) = f
(

t− x
u

)

→ Fx = F0e
−jkx

◦ gx(t) = g
(

t+ x
u

)

→ Gx = G0e
+jkx

⊲ k = ω
u

is the wavenumber in �radians per metre�

• Time delays ≃ phase shifts: Fy = Fxe
−jk(y−x)

• When a periodi
 wave meets its re�e
tion you get a standing wave:

◦ Os
illation amplitude varies with x: ∝
∣

∣1 + ρLe
−2jk(L−x)

∣

∣

◦ Max amplitude of (1 + |ρL|) o

urs every

λ
2
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