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Organization

1: Introduction

> Organization
What are circuits?
Circuit Diagrams
Charge

Current

Potential Energy
Voltage

Resistors +
Cause and Effect
Resistor Power
Dissipation

Voltage and Current
Sources

Power Conservation
Units and Multipliers

Summary

18 lectures: feel free to ask questions

Buy the textbook: Hayt, Kemmerly & Durbin “Engineering Circuit
Analysis” ISBN: 0071217066 (£44) or Irwin, Nelms & Patnaik
“Engineering Circuit Analysis” ISBN: 1118960637 (£37)

Weekly study group: Problem sheets - KEEP UP TO DATE
Fortnightly tutorial: tutorial problems

Lecture slides (including animations) and problem sheets 4+ answers
available via Blackboard or from my website:
http://www.ee.ic.ac.uk/hp/staff/dmb/courses/cctsl/cctsl.htm

— Quite dense: you should understand every word

Email me with any errors or confusions in slides or problems/answers
Christmas Test in January

Exam in June (sample papers + solutions available via Blackboard)
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What are circuits?

L Introduction O A circuit consists of electrical or electronic components
rganizacion . . .

> What are circuits? interconnected with metal wires

Circuit Diagrams . . . . . ]

Charge O Every electrical or electronic device is a circuit

Current

Potential Energy
Voltage
Resistors +

Cause and Effect
Resistor Power
Dissipation
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Voltage and Current ".‘.,::l:.ur

Sources W T

Power Conservation iotd 1 EEEE = :

Units and Multipliers .

S Breadboard Printed Integrated

O The function of the circuit is determined by which components are
used and how they are interconnected: the physical positioning of the
components usually has hardly any effect.
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Circuit Diagrams

1: Introduction

Organization

What are circuits?
D> Circuit Diagrams
Charge

Current

Potential Energy
Voltage

Resistors +
Cause and Effect
Resistor Power
Dissipation

Voltage and Current
Sources

Power Conservation
Units and Multipliers

Summary

A circuit diagram shows the way in which the components are connected

e Each component has a AYY YL
special symbol
e The interconnecting wires are <+>
shown as lines =

N
NI
A node in a circuit is all the points that are connected together via the
interconnecting wires. One of the four nodes in the diagram is coloured red.
Assumption: Interconnecting wires have zero resistance so everywhere along
a node has the same voltage.

J | Indicate three meeting wires
‘ with a e and crossovers
without one.
Junction Crossover Bad Better

Avoid having four meeting wires in case the e disappears; stagger the wires
instead.
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Charge

1: Introduction

Organization
What are circuits?
Circuit Diagrams
> Charge
Current

Potential Energy
Voltage

Resistors +

Cause and Effect
Resistor Power
Dissipation

Voltage and Current
Sources

Power Conservation
Units and Multipliers

Summary

Charge is an electrical property possessed by some atomic particles
Charge is measured in Colombs (abbreviated C)

An electron has a charge —1.6 x 1071?C, a proton +1.6 x 10~1°C
Unlike charges attract, like charges repel: the force is fantastically huge

Two people 384, 000 km apart
Each with 1% extra electrons

Force = 2 x 108N
= 20, 000 tonne — force
= 360, 000x their weight

S

Consequence: Charge never accumulates in a conductor: everywhere in a
conducting path stays electrically neutral at all times.
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Current

1: Introduction

Organization

What are circuits?
Circuit Diagrams
Charge

> Current

Potential Energy
Voltage

Resistors +
Cause and Effect
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Sources
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Summary

Current is the flow of charged particles past a measurement boundary
Using an ammeter, we measure current in Ampeéres (usually abbreviated to
Ampsor A): 1A =1C/s

Analogy: the flow of water in a pipe or river is measured in litres per second

The arrow in a circuit diagram
indicates the direction we choose
to measure the current.
I=41A = 1C of +ve charge
passes each point every second in

the direction of the arrow (or else () () dQ ) ()
1 C of —ve charge in the opposite \P]ane
direction)

/
>

I =—1A = 1C of +ve charge in the direction opposite to the arrow

e Average electron velocity is surprisingly slow (e.g. 1 mm/s) but (like a
water pipe) the signal travels much faster.

e In metals the charge carriers (electrons) are actually —ve: in this course
you should ignore this always.
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Potential Energy

L '““_°°':_°“°“ When a ball falls from a ]

rganizacion . .

What are circuits? shelf, it loses potential —'\

Circuit Diagrams

Charge energy of mgh or, .l h

Current equivalently, gh per kg.

> Potential Energy e

Voltage i

Resistors + ® _ .

Cause and Effect | S i
Resistor Power . . . .

Dissipation The potential energy per kg of any point on a mountain range is equal to
Vol nd Curren . ' . .

Sources | = gh where h is measured relative to an equipotential reference surface (e.g.
Power Conservation

A e the surface of a lake).

Summary

The potential energy difference between any two points is the energy
needed to move 1 kg from one point to the other.

The potential energy difference does not depend on the route taken
between the points.

The potential enegy difference does not depend on your choice of reference
surface (e.g. lake surface or sea level).
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Voltage

1: Introduction

Organization

What are circuits?
Circuit Diagrams
Charge

Current

Potential Energy

D> Voltage

Resistors +
Cause and Effect
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Voltage and Current
Sources

Power Conservation
Units and Multipliers

Summary

The electrical potential difference (or voltage difference) between any two
nodes in a circuit is the energy per coulomb needed to move a small +ve
charge from one node to the the other.

We usually pick one of the nodes as a reference and define the voltage at a
node to be the voltage difference between that node and the reference.

The four nodes are labelled Vi

A7 B7 Cv G. A ] B~
We have chosen G as the reference | C
node; indicated by the “ground” v O I —1
symbol. G an

The potential difference between A and the ground reference, G, is written
V4 and is also called “the voltage at A".

The potential difference between A and B is written as V45 and shown as
an arrow pointing towards A. This is the energy per coulomb in going from
B to A and satisfies Vap = V4 — V. (Different from vectors)

Easy algebra shows that V4 = —Vp4 and that Vyeo = Vus + Vae.
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Resistors

1: Introduction

Organization
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Charge

Current
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> Resistors +
Cause and Effect
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Sources
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Summary

. . L i C i rod ted with
A resistor is made f!rom a i it i st
thin strip of metal film I\‘I IV et e
deposited onto an e N

Spiral groove cut through
resistive coating tofarm
long strip of resistance material

Connector cap
and |lead-outs

insulating ceramic base.

The characteristic of a 02—
component is a graph showing s
how the voltage and current are 1 "
related. We always choose the . | ‘ ‘ |
current and voltage arrows in 2 L2
opposite directions: this is the 0.1 -
passive sign convention.

-0.2 —~
For a resistor, I o« V and % — R, its resistance which is measured in Ohms
(€2). This is Ohm's Law. Sometimes it is more convenient to work in terms
of the conductance, G = + = i measured in Siemens (S).

The graph shows the characteristic of a 12.5 €2 resistor. The gradient of the
graph equals the conductance G = 80 mS. Alternative zigzag symbol.
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[Passive Sign Convention]

To measure the voltage in a physical circuit, you use a voltmeter (V
in the figure) which has two test leads connected to it usually coloured
red (marked +) and black (marked —) respectively. The reading on
the voltmeter shows the voltage at the red lead relative to that at the
black lead (or equivalently the red voltage minus the black voltage). To
measure the voltage V' in the figure, you would connect the red lead to
the top end of the arrow (pointed end) and the black lead to the bottom
(blunt end).

To measure current you use an ammeter (A in the figure) which also has two test leads coloured red
and black respectively. The reading shows the current flowing through the ammeter into the red lead
and out of the black lead. To measure the current I on the previous slide, you would need to break the
wire carrying the current and insert the ammeter as shown in the figure.

With the connections shown in the figure, the readings on V and A will always have the same sign:
either both positive or both negative and will satisfy Ohm’s law: V = I R. However, if the connections
are reversed on either V or A, then the two readings will have opposite signs and V = —I R which does
not satisfy Ohm’s law.

So, if you want Ohm’s law to be true you must be sure to connect the measuring devices the right way
round according to the passive sign convention.
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Cause and Effect

1: Introduction

Organization Ohm’s law relates the 02

What are circuits?

Circuit Diagrams voltage drop across a
Charge ; J .
Current resistor to the current /

Potential Energy ﬂow”‘]g N |t
Voltage .

Resistors + -2 -1 1 %4 2
> Cause and Effect

Resistor Power
Dissipation

—0.1 —

Voltage and Current
Sources -0.2 -

Power Conservation
Units and Multipliers

Summary

If the voltage, V, is fixed elsewhere in the circuit, it is convenient to think
that V' causes the current I to flow.

If the current, I, is fixed elsewhere in the circuit, it is more convenient to
think that V' is caused by the current I flowing through the resistor.

Neither statement is “more true” than the other. It is perhaps truer to say
that I and V are constrained to satisfy V. =1 x R.
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Resistor Power Dissipation

1: Introduction

Organization

What are circuits?
Circuit Diagrams
Charge

Current

Potential Energy
Voltage

Resistors +

Cause and Effect
Resistor Power
> Dissipation

Voltage and Current
Sources

Power Conservation
Units and Multipliers

Summary

Gravitational potential energy, mgh, lost by a falling object is transformed
into kinetic energy or heat.

Current in a resistor 02+
always flows from a Ay, 01|
high voltage (more !
positive) to a low d Lo .
voltage (more 01
negative). 0n

When current flows through a resistor, the electrical potential energy that is
lost is transformed into heat.

The power dissipated as heat in a resistor is equal to VI Watts (W). 1
Watt equals one Joule of energy per second. Since V' and I always have
the same sign (see graph) the power dissipation is always positive.

Any component: P = VI gives the power absorbed by any component.

For a resistor only: % =R = P=VI= V% = I°R.
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Voltage and Current Sources

1: Introduction Energy in an electrical circuit is supplied by voltage and current sources

Organization
What are circuits?

Circuit Diagrams An Idea/ VO/tage source 0.2
gtaf:t maintains the same value of -
Potential Energy V for all currents. Its . I
Voltage . e . p—
Resistors + characteristic is a vertical — VI,
Cause and Effect : IR -
Cause anc Bilec line with infinite gradient. 01
Dissipation There are two common
Voltage and -0.2-
> Current Sources Sym bols
Power Conservation
Units and Multipliers .
Summary An ideal current source 0.2
maintains the same value of Ly .
I for all voltages. Its soma |
characteristic is a horizontal v v
line with zero gradient. o1
Notice that I is negative.
_02i

If the source is supplying electrical energy to a circuit, then VI < 0.
However, when a recharcheable battery is charging, VI > 0.

E1.1 Analysis of Circuits (2017-10213) Introduction: 1 —13 / 16



Power Conservation

1: Introduction

Organization
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Circuit Diagrams
Charge

Current
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Cause and Effect
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Sources
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Units and Multipliers

Summary

In any circuit some circuit elements will be supplying energy and others
absorbing it. At all times, the power absorbed by all the elements will sum
to zero.

The circuit has two nodes whose Iq 7 V/i ) _1]2
potential difference is 10 V. v,
Ohm’s Law: 10V

I=Y =001A -

Power absorbed by resistor:
For Ohm’s law or power dissipation, V' and I can be measured either
way round but must be in opposite directions (passive sign convention).
PR = VQ X IQ = (—10) X (—001) = 4+0.1W

Power absorbed by voltage source:
Ps =Vg x Ig = (+10) x (—=0.01) = =0.1 W

Total power absorbed by circuit elements: Pg + Pr =0
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Units and Multipliers

2 T e Quantity | Letter | Unit | Symbol
hat are circuits?

i, e Charge Q Coulomb C

gharse Conductance G Siemens S

P::;enr::ia| Energy C u rrent I Am p A

oltage

potase N Energy W Joule J

Cause and Effect Potential V Volt \Y%

2Ll Power P Watt W

Voltage and Current .

Sources Resistance R Ohm Q

Power Conservation

Units and

> Multipliers

Summery Value | Prefix | Symbol Value | Prefix | Symbol
10~3 milli m 103 kilo k
10~% | micro Y 10° | mega M
10~ | nano n 10” giga G
10~12 | pico D 10%2 | tera T
10~ | femto f 10 | peta P
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Summary

1: Introduction

Organization

What are circuits?
Circuit Diagrams
Charge

Current

Potential Energy
Voltage

Resistors +
Cause and Effect
Resistor Power
Dissipation

Voltage and Current
Sources

Power Conservation
Units and Multipliers
> Summary

O Circuits and Nodes
0 Charge, Current and Voltage
O Resistors, Voltage Source and Current Sources

O Power Dissipation and Power Conservation

For further details see Hayt Ch 2 or Irwin Ch 1.
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> 2: Resistor Circuits

Kirchoff's Voltage
Law

Kirchoff’'s Current
Law

KCL Example
Series and Parallel
Dividers

Equivalent
Resistance: Series
Equivalent
Resistance: Parallel
Equivalent
Resistance: Parallel
Formulae
Simplifying Resistor
Networks

Non-ideal Voltage
Source

Summary

2: Resistor Circuits
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Kirchoff's Voltage Law

2: Resistor Circuits

Kirchoff's Voltage
Law
Kirchoff’'s Current
Law
KCL Example
Series and Parallel
Dividers
Equivalent
Resistance: Series
Equivalent
Resistance: Parallel
Equivalent
Resistance: Parallel
Formulae
Simplifying Resistor
Networks
Non-ideal Voltage
Source

Summary

The five nodes are labelled ) B
A, B, C, D, E where E is the T L A
reference node. Vi

Each component that links a pair C) C}D—IA
.

of nodes is called a branch of the
network. E ‘T T

Kirchoff's Voltage Law (KVL) is a consequence of the fact that the work
done in moving a charge from one node to another does not depend on the
route you take; in particular the work done in going from one node back to
the same node by any route is zero.

KVL: the sum of the voltage changes around any closed loop is zero.
Example: Vpg +Vep +Vap +Vea =0

Equivalent formulation:
VXY — VXE — VYE = VX — Vy for any nodes X and Y.

E1.1 Analysis of Circuits (2017-10110) Resistor Circuits: 2 —2 / 13



Kirchoff’s Current Law

2: Resistor Circuits

Kirchoff's Voltage
Law

Kirchoff’'s Current
Law
KCL Example
Series and Parallel
Dividers
Equivalent
Resistance: Series
Equivalent
Resistance: Parallel
Equivalent
Resistance: Parallel
Formulae
Simplifying Resistor
Networks
Non-ideal Voltage
Source

Summary

Wherever charges are free to move around, they will move to ensure charge
neutrality everywhere at all times.

A consequence is Kirchoff's Current Law (KCL) which says that the current
going into any closed region of a circuit must equal the current coming out.
KCL: The currents flowing out of any closed region of a circuit sum to zero.

Green: I; = Ir

Blue: —Il + IQ + I5 =0

Gray: —IQ —|—I4 —I6 —|—I7 =0
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KCL Example

2: Resistor Circuits

Kirchoff's Voltage
Law

Kirchoff’'s Current
Law

> KcL Example
Series and Parallel
Dividers

Equivalent
Resistance: Series
Equivalent
Resistance: Parallel
Equivalent
Resistance: Parallel
Formulae
Simplifying Resistor
Networks

Non-ideal Voltage
Source

Summary

The currents and voltages in any linear circuit can be determined by using
KCL, KVL and Ohm'’s law.

Sometimes KCL allows you to determine currents very easily without having
to solve any simultaneous equations:

How do we calculate I ? f@
KCL: =1 +71+3=0

— [ = -2A I _‘%‘:'_I

T3?\T T
N2

Note that here I ends up negative which means we chose the wrong arrow
direction to label the circuit. This does not matter. You can choose the
directions arbitrarily and let the algebra take care of reality.
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Series and Parallel

2: Res Stor Cwcuits Series: Components that are connected in a chain so that the same current
irchoff’s Voltage == - . ] )
Law flows through each one are said to be in series.
Kirchoff's Current

Law

KCL Example R1, R2, Rs are in series and the same

> Series and Parallel I ﬂ h h h

Dividers current always flows through each.

Equivalent

::z'fj;:::: Series Within the chain, each internal node

Resistance: Parallel connects to only two branches.

Equivalent

Resistance: Parallel ] ]

Formulae R3 and R4 are not in series and do not
Simplifying Resistor ]

Networks necessarily have the same current.

Non-ideal Voltage
Source

Summary Parallel: Components that are connected to the same pair of nodes are said
to be in parallel.

R1, Ro, R3 are in parallel and the same
voltage is across each resistor (even
though Rj3 is not close to the others).

R4 and Ry are also in parallel.
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Series Resistors: Voltage Divider

2: Resistor Circuits

Kirchoff's Voltage
Law

Kirchoff’'s Current
Law

KCL Example
Series and Parallel

> Dividers
Equivalent
Resistance: Series
Equivalent
Resistance: Parallel
Equivalent
Resistance: Parallel
Formulae
Simplifying Resistor
Networks
Non-ideal Voltage
Source

Summary

V=V + Vo 4+ Vs
= IRy + IRs + IR3
:I(R1+R2+R3)

Vi _ IR
Vx I(R1‘|‘R2+R3)
R, _ R’

— Ri+R>+Rs ~ Rr

where R = Ry + R + R3 is the
total resistance of the chain.

Vx is divided into V; : V5 : V35 in the proportions R :

Approximate Voltage Divider:

|f Iy = O, then VY ~ RatRp +RB

If Iy < I, then Vyr =~ 24—

O & v, |y

R AVI
E—
RQ . Rg.
/
v
X 1
O F*
T
‘

E1.1 Analysis of Circuits (2017-10110)

Resistor Circuits: 2 -6 / 13



Parallel Resistors: Current Divider

2: Resistor Circuits Parallel resistors all share the same V.

Kirchoff's Voltage
Law

Kirchoff's Current I = Ril = VG, where G, = R% is the conductance of R;.

Law
KCL Example
Series and Parallel ]X

> [?ividers IX — Il + IQ + 13 — ¢
Equ.lvalent . ]1 ]2 ]3 * A
Resistance: Series — VGl —l— VG2 —|— VG3

Equivalent

Ctedons = V(Gi+Gs+Gs) @ R | R| | R

Resistance: Parallel
Formulae l l |
Simplifying Resistor

N etw_c;lrksI : I_l L VG o G _ i
Non-ideal Voltage Ix — V(G1+G2+G3) T G1+Ge+Gs T Gp

Source
where Gp = G1 + G2 + (G5 is the total conductance of the resistors.

Summary
Ix is divided into I : I5 : I3 in the proportions G : G5 : Gs.

Special case for only two resistors:

I :Ib=G1:Ga=Ry: Ry = I = Rll—%ngIX'
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Equivalent Resistance: Series

2: Resistor Circuits We knOW that V — Vl _I_ V2 _I_ V3 — I(Rl —|— R2 —I— R3) = IRT

Kirchoff's Voltage

Law
Kirchoff's Current So we can replace the three resistors I I
e Bomls by a single equivalent resistor of A R[4 A
€éries an aralie . .
Dividers value Rr without affecting the , T o
Equivalen . .
> Resistance: Series relationship between V' and I. BT RTD
Equivalent 1
Resistance: Parallel R A
Equivalent 1 4
Resistance: Parallel
Formulae
Simplifying Resistor . . . .
Networks Replacing series resistors by their Ri=R\+Ry R
Non-ideal Voltage . . .
Source equivalent resistor will not affect any — L
Summary of the voltages or currents in the rest R
of the circuit. —{
However the individual voltages V7, Oy Rq R{J

V5 and V3 are no longer accessible. y
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Equivalent Resistance: Parallel

2: Resistor Circuits

Kirchoff's Voltage

Law

Kirchoff’'s Current

Law

KCL Example

Series and Parallel

Dividers

Equivalent

Resistance: Series
Equivalent
Resistance:

> Parallel

Equivalent
Resistance: Parallel
Formulae
Simplifying Resistor
Networks

Non-ideal Voltage
Source

Summary

Similarly we known that I =11 + I, + I3 =V (G, + G2 + G3) = VGp.

SoV = IRp where Rp = -

We can use a single It

Gr ~ G1+G2+Gs

1/R14+1/Ro+1/R3

equivalent resistor of
resistance Rp without
affecting the
relationship between

V and I.

V)$

Replacing parallel resistors by
their equivalent resistor will not
affect any of the voltages or
currents in the rest of the circuit.

Rsand R5 are also in parallel.

Much simpler - although none of the original currents I, ---, I5 are now
accessible. Current Is and the three node voltages are identical.
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Equivalent Resistance: Parallel Formulae

2: Resistor Circuits

Kirchoff's Voltage

Law

Kirchoff’'s Current

Law

KCL Example

Series and Parallel

Dividers

Equivalent

Resistance: Series

Equivalent

Resistance: Parallel
Equivalent
Resistance:

> Parallel Formulae

Simplifying Resistor

Networks

Non-ideal Voltage

Source

Summary

For parallel resistors Gp = G1 + G2 + G3
1

or equivalently Rp = R1||R2||R3 =

These formulae work for any number of resistors.

e For the special case of two parallel resistors

RP _ 1 _ RiRs

1/R14+1/Ry ~ Ri1+R>

(“product over sum”)

e If one resistor is a multiple of the other
Suppose Ry = kR, then

_ RiRy __ _kRT _ &k _ 1
Rp = Ri+Ry  (k+1)R:1 k—i-lRl o (1 )Rl

Example: 1kQ || 99kQ = 22 kQ = (1 — 15) kO

1/R1+1/Ry+1/R3 "

Important: The equivalent resistance of parallel resistors is always less than

any of them.
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Simplifying Resistor Networks

2: Resistor Circuits

Kirchoff's Voltage
Law
Kirchoff’'s Current
Law
KCL Example
Series and Parallel
Dividers
Equivalent
Resistance: Series
Equivalent
Resistance: Parallel
Equivalent
Resistance: Parallel
Formulae
Simplifying
Resistor Networks
Non-ideal Voltage
Source

Summary

Many resistor circuits can be
simplified by alternately combining
series and parallel resistors.

Series: 2k +1k =3k

Parallel: 3k || 7k =2.1k
Parallel: 2k ||3k =1.2k

Series: 2.1k+12k =33k

Sadly this method does not always
work: there are no series or parallel
resistors here.

2k 1k 2k

a —
7k 3k
3k 2k
—1
—e
7k 3k
2.1k 1.2k
— 1
3.3k
L
2k 2k
?
1k
7k _ 3k

E1.1 Analysis of Circuits (2017-10110)

Resistor Circuits: 2 — 11 / 13



Non-ideal Voltage Source

2: Res Stor Cwcuits An ideal battery has a characteristic that is 1

irchoff’s Voltage 1

Law . . .

o Current vertical: battery voltage does not vary with i V
LER current. L | | |
KCL Example . . — |V -1 1 2
Series and Parallel Normally a battery is supplying energy so V 1

[E’;"lfvj,int and I have opposite signs, so I < 0.

Resistance: Series

Equivalent -2
Resistance: Parallel

Equivalen . .
Resistance: Parallel An real battery has a characteristic that has L,
Formulae . ..
Simplifying Resistor a slight positive slope: battery voltage ;
work . . 14
e aal Veltage decreases as the (negative) current increases. ] )
Source i -
T Model this by including a small resistor in | -1
series. V = Vg + IRpR. T
-2

The equivalent resistance for a battery
increases at low temperatures.

350

J.
I;

Q

S

S
| U

Temperature (C)
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Summary

2: Resistor Circuits

Kirchoff's Voltage
Law

Kirchoff’'s Current
Law

KCL Example
Series and Parallel
Dividers

Equivalent
Resistance: Series
Equivalent
Resistance: Parallel
Equivalent
Resistance: Parallel
Formulae
Simplifying Resistor
Networks

Non-ideal Voltage
Source

> Summary

I 1 O R B B

Kichoff’s Voltage and Current Laws
Series and Parallel components
Voltage and Current Dividers
Simplifying Resistor Networks
Battery Internal Resistance

For further details see Hayt Ch 3 or Irwin Ch 2.
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> 3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage
1: Label Nodes
Nodal Analysis Stage
2: KCL Equations
Current Sources
Floating Voltage
Sources

Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent Voltage
Sources

Universal Nodal
Analysis Algorithm

Summary

3: Nodal Analysis
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Aim of Nodal Analysis

3: Nodal Analysis

Aim of Nodal
> Analysis
Nodal Analysis Stage
1: Label Nodes
Nodal Analysis Stage
2: KCL Equations
Current Sources
Floating Voltage
Sources
Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent Voltage
Sources
Universal Nodal
Analysis Algorithm

Summary

The aim of nodal analysis is to determine the voltage at each node relative
to the reference node (or ground). Once you have done this you can easily
work out anything else you need.

There are two ways to do this:

(1) Nodal Analysis - systematic; always works

(2) Circuit Manipulation - ad hoc; but can be less work and clearer

Reminders: R

A node is all the points in a circuit A—1 T+ B %—AA
that are directly interconnected. R, . Rs |y,
We assume the interconnections + 4 L 1
have zero resistance so all points Orov CI_R‘:'_L; AV Vs
within a node have the same E ’ - “P
voltage. Five nodes: A,---, E. Es S R

Ohm's Law: VBD = IR5
KVL: VBD — VB - VD
KCL: Total current exiting any closed region is zero.
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Nodal Analysis Stage 1: Label Nodes

3: Nodal Analysis __ To find the voltage at each node, the first 1k
Aim of Nodal Analysis

Nodal Analysis step is to label each node with its voltage
Stage 1: Label

> Nodes as fO”OWS + 3k
Nodal Analysis Stage <_> 8V

2: KCL Equations 2k

Current Sources 2V
Floating Voltage
Sources
Weighted Average -

S T (1) Pick any node as the voltage reference. Label its voltage as 0 V.
o one Sources (2) If any fixed voltage sources are connected to a labelled node, label their
Dependent Voltage other ends by adding the value of the source onto the voltage of the
e, abeled end. -
S (3) Pick an unlabelled node and label it with X, Y, ..., then go back to

step (2) until all nodes are labelled.

1k
)sv
2k
O L
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Nodal Analysis Stage 2: KCL Equations

3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage

1: Label Nodes
Nodal Analysis
Stage 2: KCL
Equations

Current Sources

Floating Voltage
Sources

Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent Voltage
Sources

Universal Nodal
Analysis Algorithm

Summary

The second step is to write down a KCL equation for each node labelled
with a variable by setting the total current flowing out of the node to zero.
For a circuit with NV nodes and S voltage sources you will have N — § — 1
simultaneous equations to solve.

We only have one variable:
X8 g X0 X g o
11X=4 = X=4

(6X —48) +3X + (2X +4) =0

Numerator for a resistor is always of the form X — V where Vi is the
voltage on the other side of the resistor.
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Current Sources

3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage

1: Label Nodes

Nodal Analysis Stage

2: KCL Equations
> Current Sources
Floating Voltage
Sources

Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent Voltage
Sources

Universal Nodal
Analysis Algorithm

Summary

Current sources cause no problems.

(1) Pick reference node.
(2) Label nodes: 8, X and Y.

(3) Write equations

X -8 X X-Y __
T ty+t5 =0

Ohm's law works OK if all resistors are in k€2 and all currents in mA.

(4) Solve the equations: X =6, Y =9

E1.1 Analysis of Circuits (2017-10216)
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Floating Voltage Sources

3: Nodal Analysis Floating voltage sources have neither end connected to a known fixed
im of Nodal Analysis . .
Nodal Analysis Stage voltage. We have to change how we form the KCL equations slightly.

1: Label Nodes
Nodal Analysis Stage

2: KCL Equations (1) Pick reference node. 1k
Current Sources 8 X
b Cloating Voltage (2) Label nodes: 8, X and X + 2 since it oy
Weighted Average is joined to X via a voltage source. O)sv "vin
Digital-to-Analog . _ 2k
Converter (3) Write KCL equations but count all the 3k
epenaen ources . .
Dependent Voltage nodes connected via floating voltage 0 ‘
SO . 7 L) T [—
Universal Nodal sources as a single “super-node” giving one -
Analysis Algorithm . 1k
Summary equatlon 8 X
X-8 | X |, (X+2)-0 _ ¥ 2V
r T2 3 =0 <—> 8V X492
2k
3k
(4) Solve the equations: X =4 0 |

Ohm'’s law always involves the difference between the voltages at either end
of a resistor. (Obvious but easily forgotten)
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Weighted Average Circuit

3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage
1: Label Nodes
Nodal Analysis Stage
2: KCL Equations
Current Sources
Floating Voltage
Sources

Weighted Average
D> Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent Voltage
Sources
Universal Nodal
Analysis Algorithm

Summary

A very useful sub-circuit that calculates the weighted average of any
number of voltages.

KCL equation for node X:

X—-V; X—=Vs X-Vs __
A 4 + = :

R RQ R3 V2 R2
Still works if V3 = 0. :
|0 S |y

Or using conductances:

(X — Vl)Gl + (X — VQ)GQ + (X — V3)G3 =0
X(G1+ G2+ G3) = ViGy + VaGa + V3G3

X = ViGi1+VoGo+VaGs _ °_ L ViG;

G1+G2+Gs o1 Gy

Voltage X is the average of V;, V5, V3 weighted by the conductances.
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Digital-to-Analog Converter

3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage
1: Label Nodes
Nodal Analysis Stage
2: KCL Equations
Current Sources
Floating Voltage
Sources
Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent Voltage
Sources
Universal Nodal
Analysis Algorithm

Summary

A 3-bit binary number, b, has bit-weights of 4, 2 and 1. Thus 110 has a
value 6 in decimal. If we label the bits bobibg, then b = 4by + 2by + bg.

We use bybibg to control the switches which determine whether V; =5V or
V. =0V. Thus V; = 5b;. Switches shown for b = 6.

Ly, ly, ol
X = 2V2;f;1+28% Lp, V2K
— % (4V2 + 2V7 + Vo) M|4——k'_0
o
. . 1| V. 8k
but V; =5 x b; since it connects to 5V 1 .MJ
either OV or 5V 9—

= 2 (4by + 2b1 + bg) = 2b

-1 1
GQ—R2—2mS,...

So we have made a circuit in which X is proportional to a binary number b.
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Dependent Sources

3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage
1: Label Nodes
Nodal Analysis Stage
2: KCL Equations
Current Sources
Floating Voltage
Sources
Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent
D> Sources
Dependent Voltage
Sources
Universal Nodal
Analysis Algorithm

Summary

A dependent voltage or current source is one whose value is determined by
voltages or currents elsewhere in the circuit. These are most commonly
used when modelling the behaviour of transistors or op-amps. Each
dependent source has a defining equation.

In this circuit: Ig = 0.2W mA where W is in volts.

(1) Pick reference node.

(2) Label nodes: 0, U, X and Y .

(3) Write equation for the dependent 15k

source, Ig, in terms of node voltages:
Is =0.2 (U — X) .
(4) Write KCL equations:

X-U |, X | X-Y _ Y—X Y _
o Tt =0 % TIst =0
(5) Solve all three equations to find X, Y and Ig in terms of U:
X =01U, Y = —1.5U, Ig = 0.18U

Note that the value of U is assumed to be known.

E1.1 Analysis of Circuits (2017-10216) Nodal Analysis: 3 -9 / 12



Dependent Voltage Sources

3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage

1: Label Nodes

Nodal Analysis Stage

2: KCL Equations
Current Sources
Floating Voltage
Sources
Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent
D> Voltage Sources
Universal Nodal
Analysis Algorithm

Summary

The value of the highlighted dependent voltage source is Vs = 10J Volts
where J is the indicated current in mA.

(1) Pick reference node.

(2) Label nodes: 0, 5, X, X + 3 and
X + VS )

(3) Write equation for the dependent
source, Vg, in terms of node voltages:

10k
X+3
5k

Vg =10J =10 x 2H5=2 = 3Vg =X — 5

(4) Write KCL equations: all nodes connected by floating voltage sources
and all components connecting these nodes are in the same “super-node”

X+Vs—5 X X+3

(5) Solve the two equations: X = —1 and Vg = —2
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Universal Nodal Analysis Algorithm

3: Nodal Analysis

Aim of Nodal Analysis
Nodal Analysis Stage
1: Label Nodes
Nodal Analysis Stage
2: KCL Equations
Current Sources
Floating Voltage
Sources
Weighted Average
Circuit
Digital-to-Analog
Converter
Dependent Sources
Dependent Voltage
Sources

Universal Nodal
D> Analysis Algorithm

Summary

(1) Pick any node as the voltage reference. Label its voltage as 0 V. Label
any dependent sources with Vg, Ig, ....

(2) If any voltage sources are connected to a labelled node, label their other
ends by adding the value of the source onto the voltage of the labelled end.
Repeat as many times as possible.

(3) Pick an unlabelled node and label it with X, Y, ..., then loop back to
step (2) until all nodes are labelled.

(4) For each dependent source, write down an equation that expresses its
value in terms of other node voltages.

(5) Write down a KCL equation for each “normal”’ node (i.e. one that is not
connected to a floating voltage source).

(6) Write down a KCL equation for each “super-node”. A super-node
consists of a set of nodes that are joined by floating voltage sources and
includes any other components joining these nodes.

(7) Solve the set of simultaneous equations that you have written down.

E1.1 Analysis of Circuits (2017-10216)
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Summary

3: Noc|a| Ana|ysis ) Nodal Analysis

Aim of Nodal Analysis

Nodal Analysis St : e :

Nodal Analysis Stage o Simple Circuits (no floating or dependent voltage sources)

Nodal Analysis Stage

2: KCL Equations o Floating Voltage Sources

Current Sources > use supernodes: all the nodes connected by floating voltage
Floating Voltage P : y g g
Sources :

T A sources (independent or dependent)

Circuit

Digital-to-Analog o Dependent Voltage and Current Sources

Converter > I_ b I h th . bl

Dependent Sources abel each source with a variable

Dependent Voltage > Write extra equations expressing the source values in terms of
Univer?a| Nod.-:nl node Vo|tages

Analysis Algorithm ] ]

S —— >  Write down the KCL equations as before

e Mesh Analysis (in most textbooks)
o Alternative to nodal analysis but doesn’t work for all circuits

o No significant benefits = ignore it

For further details see Hayt Ch 4 or Irwin Ch 3.
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4: Linearity and
> Superposition

Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power
Proportionality

Summary

4: Linearity and Superposition

E1.1 Analysis of Circuits (2018-10340)
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Linearity Theorem

4: Linearity and
Superposition

D> Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power
Proportionality

Summary

Suppose we use variables instead of fixed values for all of the independent
voltage and current sources. We can then use nodal analysis to find all
node voltages in terms of the source values.

(1) Label all the nodes
(2) KCL equations

X-U, | X | X-Y _
5t + 35 =0

5o+ (-U2) =0
(3) Solve for the node voltages

X = %U1‘|‘%U27 Y = %U1‘|‘13—1U2

Steps (2) and (3) never involve multiplying two source values together, so:

Linearity Theorem: For any circuit containing resistors and independent
voltage and current sources, every node voltage and branch current is a
linear function of the source values and has the form ) a;U; where the U;
are the source values and the a; are suitably dimensioned constants.

Also true for a circuit containing dependent sources whose values are
proportional to voltages or currents elsewhere in the circuit.
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Zero-value sources

4: Linearity and
Superposition

A zero-valued voltage source has zero volts

Linearity Theorem

> Zero-value sources

Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power

Proportionality

between its terminals for any current. It is
equivalent to a short-circuit or piece of wire
or resistor of 0 2 (or 0o S).

A zero-valued current source has no current

Y% CD i

Summary flowing between its terminals. It is equivalent
to an open-circuit or a broken wire or a C?) _
resistor of co 2 (or 0 S). 0A
o l
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Superposition

4: Linearity and
Superposition

Linearity Theorem
Zero-value sources
> Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power
Proportionality

Summary

We can use nodal analysis to find X in terms of U, V and W.

. X=U XV X —
KCL: X580 + XV 4 X W =0 X
10X —3U —V — 6W =0
X =0.3U 4 0.1V + 0.6W

—=

From the linearity theorem, we know anyway that X = aU + bV + cW so
all we need to do is find the values of a, b and ¢. We find each coefficient
in turn by setting all the other sources to zero:

We have Xy =aU +bx0+c¢cx 0=alU.
Similarly, Xy, = bV and Xy =cW = X =Xy + Xy + Xw.

E1.1 Analysis of Circuits (2018-10340)
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Superposition Calculation

4: Linearity and
Superposition

Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power
Proportionality

Summary

Superposition:

Find the effect of each source
by setting all other sources to
add up the results.

7 | @, Xw =

on its own _
zero. Then (

7

I A '

6

—_ o 6 o
sivU = 35U = 0.3U

2

= _ 2 -
2V =2V =01V

6 2 12 —

srzV x5 =5W =006

Adding them up: X = Xy + Xy + Xyw = 0.3U + 0.1V 4+ 0.6W
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Superposition and dependent sources

4: Linearity and
Superposition

Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power
Proportionality

Summary

A dependent source is one that is determined by the voltage and/or current
elsewhere in the circuit via a known equation. Here V £ Y — X.

Step 1: Pretend all sources are independent

- . _ v 8k, 12k
and use superposition to find expressions for -
the node voltages: " V

X = 13—0U1+2U2+%V U, U, Y
Y=2U1—|-6U2—|-%V B e .

Step 2: Express the dependent source values in terms of node voltages:
V=Y-X

+

Step 3: Eliminate the dependent source values from the node voltage
equations:

X=2U1+20,+3 (Y -X) =X -3V =2U 420,
Y =2U; +6Uy + 3 (Y - X)) = 3sX+ 1Y =2U; +6U;
X = 3U; + 3U;
Y =U; +9U;

Note: This is an alternative to nodal anlysis: you get the same answer.

E1.1 Analysis of Circuits (2018-10340) Linearity and Superposition: 4 — 6 / 10



Single Variable Source

4: Linearity and
Superposition

Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources

Single Variable
> Source
Superposition and
Power

Proportionality

Any current or voltage can be written X = a1 U7 + a2Us + as3Us + .. ..

Using nodal analysis (slide 4-2) or else
superposition:

X =3U; + 2Us.
Suppose we know U; = 6 mA, then

XZ%Ul—I-%UQ:%Ul—I-Zl.

2k

U X

Ou 3k

1k

6mA

Summary

If all the independent sources except for U; 5 -

have known fixed values, then a0 /
X 4F E

X = CLlUl +b 3.5/
where b = CL2U2 -+ CL3U3 + ... %2 .1 J ! 2
This has a straight line graph.
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Superposition and Power

4: Linearity and
Superposition

Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power
Proportionality

Summary

The power absorbed (or dissipated) by a component always equals V' I
where the measurement directions of V' and I follow the passive sign
convention.

For a resistor VI = V% — I°’R.

2
Power in resistor is P = % =64W U=3V

Power due to U; alone is P; = llj—g =09W Uz=5\6> 10

2
Power due to Us alone is P, = (1]—(2) =25W

P+#P,+P, = Power does not obey superposition.

You must use superposition to calculate the total V' and/or the total I and

then calculate the power.
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Proportionality

4: Linearity and
Superposition

Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power

> Proportionality

Summary

From the linearity theorem, all voltages and currents have the form ) a;U;
where the U; are the values of the independent sources.

If you multiply all the independent sources by the same factor, k, then all
voltages and currents in the circuit will be multiplied by k.

The power dissipated in any component will be multiplied by k2.
Special Case:

If there is only one independent source, U, then all voltages and currents
are proportional to U and all power dissipations are proportional to UZ.
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Summary

4: Linearity and
Superposition

Linearity Theorem
Zero-value sources
Superposition
Superposition
Calculation
Superposition and
dependent sources
Single Variable
Source
Superposition and
Power
Proportionality

> Summary

Linearity Theorem: X = ) . a;U; over all independent sources U;
Superposition: sometimes simpler than nodal analysis, often more
insight.
o Zero-value voltage and current sources
o Dependent sources - treat as independent and add dependency
as an extra equation

If all sources are fixed except for U; then all voltages and currents in
the circuit have the form aU; + b.

Power does not obey superposition.

Proportionality: multiplying all sources by £ multiplies all voltages and
currents by k and all powers by k2.

For further details see Hayt Ch 5 or Irwin Ch 5.
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5: Thévenin and
> Norton Equivalents

Equivalent Networks
Thévenin Equivalent
Thévenin Properties

Determining
Thévenin

Complicated Circuits
Norton Equivalent

Power Transfer

Source

Transformation

Source 5 :
Rearrangement

Series Rearrangement

Summary

Thévenin and Norton Equivalents

E1.1 Analysis of Circuits (2017-10110)

Thevenin and Norton: 5 -1 / 12



Equivalent Networks

5: Thévenin and
Norton Equivalents

Equivalent
Networks

Thévenin Equivalent
Thévenin Properties

Determining
Thévenin

Complicated Circuits
Norton Equivalent

Power Transfer
Source
Transformation
Source
Rearrangement

Series Rearrangement

Summary

From linearity theorem: V = al + b.

Use nodal analysis:
KCLOX: &£ — 6+ £5¥ =0

KCLOV: ¥5X — [ =0

Eliminating X gives: V = 31 + 6.
There are infinitely many networks with the same values of a and b:

2m I

These four shaded networks are equivalent because the relationship
between V' and I is exactly the same in each case.

The last two are particularly simple and are respectively called the Norton
and Thévenin equivalent networks.
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Thévenin Equivalent

5: Thévenin and
Norton Equivalents

Equivalent Networks

Thévenin
> Equivalent

Thévenin Properties

Determining
Thévenin

Complicated Circuits
Norton Equivalent

Power Transfer
Source
Transformation
Source
Rearrangement

Series Rearrangement

Summary

Thévenin Theorem: Any two-terminal network consisting of resistors, fixed
voltage/current sources and linear dependent sources is externally
equivalent to a circuit consisting of a resistor in series with a fixed voltage
source.

We can replace the shaded part of the ok ok

circuit with its Thévenin equivalent =1

network. 3k 3k
K émA 14V

The voltages and currents in the unshaded
part of the circuit will be identical in both :
circuits.

The new components are called the
Thévenin equivalent resistance, Rr},, and
the Thévenin equivalent voltage, Vi, of
the original network.

This is often a useful way to simplify a complicated circuit (provided that
you do not want to know the voltages and currents in the shaded part).
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Thévenin Circuit Properties

5: Thévenin and
Norton Equivalents

Equivalent Networks

Thévenin Equivalent
Thévenin

> Properties

Determining
Thévenin
Complicated Circuits
Norton Equivalent
Power Transfer
Source
Transformation

Source
Rearrangement

Series Rearrangement

Summary

A Thévenin equivalent circuit has I '
a straight line characteristic with 4, 0 -
the equation: 3K Gé z., /
V= Rppl + Vrp 6V 1
pm— 1 — —VTh i % 0 2 4 6 8
& [ = RThV Rrn — ' V)

Three important quantities are:

Open Circuit Voltage: If I = 0 then Voo = V. (X-intercept: o)

Short Circuit Current: If V=0 then Ig¢ = —ELTZ (Y-intercept: x)

Thévenin Resistance: The slope of the characteristic is j—‘f/ — Rl .
Th

If we know the value of any two of these three quantities, we can work out
VTh and RTh-

In any two-terminal circuit with the same characteristic, the three
quantities will have the same values. So if we can determine two of them,
we can work out the Thévenin equivalent.
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Determining Thévenin Values

B: Thévenin and We need any two of the following:

Norton Equivalents

Equivalent Networks ] .

Thévenin Equivalent Open C|rCU|t VOItage VOC’ — VTh — 6V

Thévenin Properties |:
e Short Circuit Current: Igo = —XLTZ = —2mA tk

Complicated Circuits

Norton Equivalent Thévenin Resistance: R, =2k + 1k = 3k

Power Transfer
Source

Transformation X 2k =0 2k
Source . :’_0_4_
Rearrangement
Series Rearrangement 3k v 3k 3k
Summery ”‘D omA | ”{[ ”‘D ~ Aev
! Iy
—I— i

= =1
Thévenin Resistance:

We set all the independent sources to zero (voltage sources — short circuit,
current sources— open circuit). Then we find the equivalent resistance
between the two terminals.

The 3k resistor has no effect so Ry, =2k + 1k = 3k.

Any measurement gives the same result on an equivalent circuit.
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Thévenin of Complicated Circuits

5: Thévenin and
Norton Equivalents

Equivalent Networks
Thévenin Equivalent
Thévenin Properties
Determining
Thévenin
Complicated
Circuits
Norton Equivalent
Power Transfer
Source
Transformation
Source
Rearrangement
Series Rearrangement

Summary

For a complicated circuit, you can use
nodal analysis to find the Thévenin

equivalent directly in the form:

V = VTh —|—IRTh.

Step 1: Label ground as an output terminal + label other nodes.

Step 2: Write down the equations (Y is a supernode)

X-V X X-Y __
2 + 1 + 1 0

V—_Y+3 V—X _
1 + 2 —1=0

Step 3: Eliminate X and Y and
solve for V in terms of I:

V=1II—2=Rp,I+ Vpy

14 | |V 1y

ooyl | ®
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Norton Equivalent

5: Thévenin and
Norton Equivalents

Equivalent Networks
Thévenin Equivalent
Thévenin Properties

Determining
Thévenin

Complicated Circuits
> Norton Equivalent

Power Transfer
Source
Transformation
Source
Rearrangement

Series Rearrangement

Summary

Norton Theorem: Any two-terminal network consisting of resistors, fixed
voltage/current sources and linear dependent sources is externally
equivalent to a circuit consisting of a resistor in parallel with a fixed current
source.

KCL: =T = Ino + g— =0 L
el=3-V Iy, e | 17,

c.f. Thévenin (slide 5-4): ® =

Same R and Iy, = % 1N0=2m_ :/ |

Open Circuit Voltage: If I =0 then Voo = InoRrh.

Short Circuit Current: If V=0 then Isc = —1In,

Thévenin Resistance: The slope of the characteristic is R%M.

Easy to change between Norton and Thévenin: Vi, = InoRyy,.
Usually best to use Thévenin for small R7;, and Norton for large Ry,
compared to the other impedances in the circuit.
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Power Transfer

5: Thévenin and
Norton Equivalents

Equivalent Networks
Thévenin Equivalent
Thévenin Properties

Determining
Thévenin

Complicated Circuits
Norton Equivalent

> Power Transfer
Source
Transformation
Source
Rearrangement

Series Rearrangement

Summary

Suppose we connect a variable resistor, R, across a two-terminal network.
From Thévenin's theorem, even a complicated network is equivalent to a
voltage source and a resistor.

We know [ = T o /

2
= power in Ry is P;, = [°R; = (RZZ;:LL];?LP Ry, ©
To find the R; that maximizes Py : Vi

0= dPL _ (Rrnt+Ri)*V5, —2Vy, Ri(RrntRe)
dRL (Rrh+Rp)*

_ Vin(Rrat+Rr)—2Vy, Ry

(Rrn+Rp)® | \

max

= Vi (Rrn + Rp) —2Rp) =0 2 o5
2
= Ry =firp, = P(max) — 4‘1{3;2 % 1 2 3 4

For fixed Rry, the maximum power transfer is
when R; = Ry, (“matched load").
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Source Transformation

5: Thévenin and
Norton Equivalents

Equivalent Networks
Thévenin Equivalent
Thévenin Properties

Determining
Thévenin

Complicated Circuits
Norton Equivalent

Power Transfer
Source

> Transformation

Source

Rearrangement

Series Rearrangement

Summary

Sometimes changing between Thévenin and Norton can simplify a circuit.
Suppose we want to calculate 1.

x . J x I
6A 2 3 2

RTIY Chsy v

Norton — Thévenin on current source: I = M = 5.6 A

If you can’t spot any clever tricks, you can always find out everything with
nodal analysis.

—6—|— _|_u 0
= 5X =36—-30=6
= X =1.2
_ X—(=10) _
= [=———— =56

E1.1 Analysis of Circuits (2017-10110)
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Source Rearrangement

5: Thévenin and
Norton Equivalents

Equivalent Networks
Thévenin Equivalent
Thévenin Properties

Determining
Thévenin

Complicated Circuits
Norton Equivalent

Power Transfer

Source

Transformation
Source

> Rearrangement

Series Rearrangement

Summary

If all but one branches connecting to a node are voltage sources or are
current sources, you can choose any of the branches to be the sourceless

one.

Voltage Sources:

We can use the left
node as the reference

Current Sources:

KCL gives current into 3 5 [ 3 ) {
rightmost node

E1.1 Analysis of Circuits (2017-10110) Thevenin and Norton: 5 — 10 / 12



Series Rearrangement

5: Thévenin and If we have any number of voltage sources and resistors in series we can
orton Equivalents .
Equivalent Networks calculate the total voltage across the chain as:
Thévenin Equivalent
Thévenin Pr rti
De:ereminingope e V — 8I _ 2 —|_ 7I —|_ 5 —|_ 9I — (_2 —I_ 5) —|_ (8 —|_ 7 —|_ 9)[
Thévenin
Complicated Circuits _
Norton Equivalent o 3 T 24] 8 2 7 5 9
Power Transfer ]
Source o— 4@7 4@7 o
Transformation
Source
Rearrangement >
Series V
Rearrangement . .
Summary We can arbitrarily
rearrange the order of > 5 % 7 9

the components | || .

without affecting

V =3+ 241.
3
o 24 o
NG

If we move all the voltage sources together and all the resistors together we
can merge them and then we get the Thévenin equivalent.
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Summary

5: Thévenin and e Thévenin and Norton Equivalent Circuits
orton Equivalents
Equivalent Networks o A network has Thévenin and Norton equivalents if:

Thévenin Equivalent
Thévenin Properties

> only 2 terminals connect it to the outside world

Determining

Thévenin . . . .

Complicated Circuits > it is made of resistors + sources + linear dependent sources
Norton Equivalent .

Power Transfer O HOW to determlne VTh, INO and RTh

Source

Transformation > Method 1: Connect current source — Nodal analysis
Rearrangement .

Series Rearrangement [> MethOd 2 Flnd any tWO Of

> Summary

(a) Voc = Virp, the open-circuit voltage
(b) Isc = —Ino, the short-circuit current
(c) Rrn, equivalent resistance with all sources set to zero

> Related by Ohm’'s law: Vi, = InoRrn
e Load resistor for maximum power transfer = Ry,

e Source Transformation and Rearrangement

For further details see Hayt Ch 5 & A3 or Irwin Ch 5.
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6: Operational
> Amplifiers

Operational Amplifier
Negative Feedback
Analysing op-amp
circuits
Non-inverting
amplifier

Voltage Follower
Inverting Amplifier
Inverting Summing
Amplifier

Differential Amplifier
Schmitt Trigger

Choosing Resistor
Values

Summary

6: Operational Amplifiers
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Operational Amplifier

6: Operational
Amplifiers

Operational

Amplifier
Negative Feedback
Analysing op-amp
circuits
Non-inverting
amplifier
Voltage Follower
Inverting Amplifier
Inverting Summing
Amplifier
Differential Amplifier
Schmitt Trigger

Choosing Resistor
Values

Summary

An op amp (operational amplifier) is a
circuit with two inputs and one output.

V-|—_\_+ Y
Y =AWV, -V.) VJ:"

The gain, A, is usually very large: e.g. A = 10° at low frequencies.

Vs
o
V -

The input currents are very small: e.g. £1nA.

Internally it is a complicated circuit with
about 40 components, but we can forget
about that and treat it as an almost
perfect dependent voltage source.

Integrated circuit pins are 17° — [8
numbered anti-clockwise from 2 (e Ve 7
blob or notch (when looking

377 16
from above). RV

4[5 15
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Negative Feedback

6: Operational
Amplifiers

Operational Amplifier
> Negative Feedback
Analysing op-amp
circuits

Non-inverting
amplifier

Voltage Follower
Inverting Amplifier
Inverting Summing
Amplifier

Differential Amplifier
Schmitt Trigger

Choosing Resistor
Values

Summary

In a central heating system, if the temperature falls too low the thermostat
turns on the heating, when it rises the thermostat turns it off again.
Negative feedback is when the occurence of an event causes something to

happen that counteracts the original event.
>_ﬁY

If op-amp output Y falls then V_ will fall by
the same amount so (V. — V_) will increase.
This causes Y to rise since

Y =A(Vy—-V.).
Y=A(X-Y)

Y(1+A)=AX = Y:ﬁX — X for large A

If Y = A(Vy —V_) then V; — V_ = L which, since 4 ~ 10°, is normally
very very small.

Golden Rule: Negative feedback adjusts the output to make V. ~ V_.
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Analysing op-amp circuits

o G Nodal analysis is simplified by making some assumptions.
Operational Amplifier
Negative Feedback Note: The op-amp needs two power supply Vv 5 %
> firter® oPram? connections; usually +15V and —15V. v _
%E.Eii:im Thes_e are almost always omitted from the iy C 15V
S circuit diagram. The currents only sum to
Inverting Summing zero (KCL) if all five connections are E
Differential Amplifier included. o
Schmitt Trigger
Choosing Resistor 1. Check for negative feedback: to ensure that an increase in Y makes
Summary (V. — V_) decrease, Y must be connected (usually via other
components) to V_.
2. Assume V, =V_: Since (VL. —V_) = %, this is the same as assuming
that A = 0o. Requires negative feedback.
3. Assume zero input current: in most circuits, the current at the op-amp
input terminals is much smaller than the other currents in the circuit,
SO we assume it is zero.
4.  Apply KCL at each op-amp input node separately (input currents = 0).
5. Do not apply KCL at output node (output current is unknown).
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Non-inverting amplifier

6: Operational

Amplifiers Circuit has input voltage X and output voltage Y. The circuit gain = %

Operational Amplifier

\ X
Negative Feedback ) Y
Analysing ap-amp Applying steps 1 to 3:
circuits
on-invertin . R,=3k

> amplifier ¢ 1. Negative feedback OK. w7
Voltage Follower
Inverting Amp|if-ier 2 V_ — V+ — X Rlzlk
Inverting Summing
Amplifier _1T
Differential Amplifier —
Schmitt Trigger
Choosing Resistor 3. Zero input current at V_ means Ry and R; are in series
Summary (= same current) and form a voltage divider. So X = ﬁ}/.

SoY =futfe x — (14 B2) X = 414X

Rl Rl
Non-inverting amplifier because the gain % is positive.
Consequence of X connecting to V. input.
Can have any gain > 1 by choosing the ratio 72.
Cause/effect reversal: Potential divider causes V_ = Y.

Feedback inverts this so that Y = 4V/..
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Voltage

Follower

6: Operational
Amplifiers

Operational Amplifier
Negative Feedback
Analysing op-amp
circuits
Non-inverting
amplifier

D> Voltage Follower
Inverting Amplifier
Inverting Summing
Amplifier

Differential Amplifier
Schmitt Trigger

Choosing Resistor
Values

Summary

A special case of the non-inverting amplifier
with Ry = oo and/or Ry = 0.

Gain isl—l—g—iz

L >ﬁy
Output Y “follows” input X.

Advantage: Can supply a large current at Y while drawing almost no
current from X. Useful if the source supplying X has a high resistance.

Without voltage follower: Y = 0.01U. 99Kk
[ ] Y
With voltage follower: Y = U. @ }

Although the voltage gain is only 1, the power gain is much larger.
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Inverting Amplifier

0: Operational Negative feedback OK. R,=3k

Amplifiers

Operational Amplifier ] .
Negative Feedback Since V. = 0, we must have V_ = 0. y Ri=lk

Analysing op-amp
circuits
Non-inverting

amplifier —
Voltage Follower . 0—X o—-Y __ _ Ry _

D> Inverting Amplifier KCL at V_ nOde R4 + Ry O = Y T _R_lX T _SX
Inverting Summing

Amplifier » - : : :

Diffrential Amplifier Inverting Amplifier because gain % is negative. Consequence of X
Schmitt Trigger connecting to the V_ input (via Ry).

Choosing Resistor . . - R5

Values Can have any gain < 0 by choosing the ratio 7=.

Summary

Negative feedback holds V_ very close to V.
If V. =0V, then V_ is called a virtual earth or virtual ground.

Nodal Analysis: Do KCL at V. and/or V_ to solve circuit. When analysing
a circuit, you never do KCL at the output node of an opamp because its
output current is unknown. The only exception is if you have already solved
the circuit and you want to find out what the op amp output current is
(e.g. to check it is not too high).
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Inverting Summing Amplifier

6: Operational
Amplifiers

Operational Amplifier
Negative Feedback
Analysing op-amp
circuits
Non-inverting
amplifier
Voltage Follower
Inverting Amplifier
Inverting Summing
Amplifier
Differential Amplifier
Schmitt Trigger

Choosing Resistor
Values

Summary

We can connect several input signals to the
inverting amplifier.

As before, V_ = 0 is a virtual earth due to
negative feedback and V, = 0.

KCL at V_ node: &= X1+0 X2+0 X3+
= Y=- (%{Xl + FE X + %Xg)
= Y =— (8X1 + 4X2 + 4X3)

Y =0

Y is a weighted sum of the input voltages with the weight of X; equal to

— 38 = —GiRp.

Input Isolation: The current through R; equals £

O which is not affected

by X5 or X3. Because V_ is held at a fixed voltage the inputs are isolated

from each other.
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Differential Amplifier

6: Operational
Amplifiers

Operational Amplifier

Negative Feedback
Analysing op-amp
circuits
Non-inverting
amplifier
Voltage Follower
Inverting Amplifier
Inverting Summing
Amplifier
Differential
> Amplifier
Schmitt Trigger
Choosing Resistor
Values

Summary

A 2-input circuit combining inverting Ry=3k
and non-inverting amplifiers. Ri=1k

Linearity = Z = aX + bY.

S B N
Use superposition to find a and b. Re=lk Re=3k —

Find a: Set Y = 0. KCL at V; node = V; = 0. We now have an

. . . L R2 L L
inverting amplifier, so Z = — X =-3X = a= -3

Find b: Set X = 0. We can redraw circuit to make it look more familiar: a
potential divider followed by a non-inverting amplifier.

Rs3 and R4 are a potential divider (since current into V. equals zero), so
V=Y =23Y.

R3+Rs™ ~— 4
The non-inverting amplifier has a gain of % = 4.
1
. L _ Ry Ri+R> _ 3 _
The combined gain is b = 7725 x =522 = 4 x4 =+3.

Combining the two gives Z = 3 (Y — X). The output of a differential
amplifier is proportional to the diffference between its two inputs.
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Schmitt Trigger

6: Operational
Amplifiers

Operational Amplifier
Negative Feedback
Analysing op-amp
circuits
Non-inverting
amplifier

Voltage Follower
Inverting Amplifier
Inverting Summing
Amplifier

Differential Amplifier
D> Schmitt Trigger

Choosing Resistor
Values

Summary

Positive feedback: If op-amp output Y rises then
(Ve — V_) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,

(V.. — V_) > 0 so the output stays at +14 V.

If X >4, then (V. —V_) <0, Y will rapidly
switch to its minimum value (e.g. —14V).

Now Z = —4 and Y will only switch back to +14
when X falls below —4.

Negative feedback stabilizes the output to make
Vi~ V_.

Positive feedback adjusts the output to maximize
[V, — V_|. Output will switch between its
maximum and minimum values, e.g. £14V
(slightly less than the 415V power supplies).

Switching will happen when V, =V_.

E1.1 Analysis of Circuits (2017-10110)

Operational Amplifiers: 6 — 10 / 12



Choosing Resistor Values

27 Sl The behaviour of an op-amp circuit depends on the ratio of resistor values:
Operational Amplifier gain = —ERz2/Rr,. How do you choose between 39/1q, 3kQ/1xq , 3MQ/1 M0
Negative Feedback 3G0 2

Analysing op-amp and /1 G

circuits

Non-invertin .

amplifier Small resistors cause large currents. R=30
e o If X =41V, then Y = 73V,

nverting Amplifier Y_0

e Summine and so [ = "% = F1A.

Differential Amplifier However typical op-amps can only supply

Schmitt Tri I ' .
chmitt Trigger +5mA, so the circuit will not work.

Choosing Resistor

> values

Summary Large resistors increase sensitivity to R=3GO
interference and to op-amp input currents. RI_IGQ—:L}L
If the bias current into V_ is I = 1 nA, X—BJ&; Y
then KCL at V_ gives L

L+ X 4 Ip=0=Y = -2 X +IpRy = —3X +3

2

instead of Y = —3X.

Within wide limits, the absolute resistor values have little effect.
However you should avoid extremes.
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Summary

plarisc e |deal properties:

Operational Amplifier o Zero input current

Negative Feedback - .

T pp—. o Infinite gain

ot o Do not use KCL at output (except to determine output current).

amplifier

veltage Follower e Negative Feedback circuits:

nverting mplirier .

s i o Assume V, = V_and zero input current
mplitier . e . .

Differential Amplifier O Sta ndal’d ampllflel’ CerL“tS:

L EE > Non-inverting gain = 1 + R2/R,

> Inverting gain = —Rz2/R,
>  Summing amplifier
> Differential Amplifier

Choosing Resistor
Values

> Summary

e Positive feedback circuits:
o Vour = £Vimae (no good for an amplifier)
o Schmitt Trigger: switches when V, =V_.

e Choosing resistors: not too low or too high.

For further details see Hayt Ch 6 or Irwin Ch 4.
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7: Negative
Feedback is
> Wonderful

Block Diagram

Solving Block
Diagrams
Inverting Amplifier
Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

Instability

Summary

Negative Feedback is Wonderful
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Block Diagram

7: Negative Feedback
is Wonderful

> Block Diagram

Solving Block
Diagrams
Inverting Amplifier
Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

Instability

Summary

In the non-inverting op amp circuit we take a
fraction of the output signal, Y, and subtract it
from the input signal, X.

We can represent this using a block diagram:
A = L: the gain of the op amp

E.
B = % = i: gain of the feedback path

The “+" and “=" signs indicate that the feedback is
subtracted from X to give an “error’ signal, E.

A gain block has one input and one output
(indicated here by an arrow): V = A x U

An adder block many inputs and one output. The
signs indicate whether each input is added or
subtracted: Q = P, + P, — P35

ET d
R2:3k
w
Rlzlk
L
X + FE Y

C{a -
P

P ++<> O
Py

Normally, inputs are on the left and outputs are on the right.
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Solving Block Diagrams

is Wonderful

7: Negative Feedback e Label inputs, output and adder outputs X 4+ E Y

Block Diagram 4
Solving Block BY
> Diagrams B

Inverting Amplifier
Negative Feedback

Examples | e Write down equations for the output and all adder outputs
Pors e Y = AE
ain Stabilization
I(Z;)istorst‘i:on Re;uction E — X T BY
N erference Rejection Never use Kichoff’s current law in block diagrams.
Cause/Effec . . . ) ]
|nversa_/o_n : e Solve the equations by eliminating unwanted variables
o Y = AE= A(X — BY)= AX — ABY
_ Yy _ A
=Y (1+AB)=AX = < =155
AB is called the loop gain of the circuit. If you Y + E

after the break, this will cause the other side of the
break to change by —A x AB.

Y

break the loop at any point and inject a signal A T T
<
A
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Inverting Amplifier

7: Negative Feedback
is Wonderful

Block Diagram

Solving Block
Diagrams

> Inverting Amplifier

Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

Instability

Summary

Sometimes we have an additional block at the X[ EM
input shown here as C. - ~ T
We see that £ = CX — BY and, as before,
Y = AF

Eliminating F : % — 1+sz143 = A—lC+B% % provided A™! <« B.
% equals the forward gain, C'A, divided by the loop gain plus one.
Inverting Amplifier Ry=3k
Error signal is E =V, — V_ L{%( =)

Hence V, =0 = V_=-F *

Op-amp output is Y = AF where A ~ 10° is
the op-amp gain.

Use superposition, nodal analysis or weighted average formula to find an

expression for —F in terms of X and Y:

—E:%:%XJriY:—(CX—BY)
HenceC:—%andB:Jriand%z%:—S
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Negative Feedback Examples

7: Negative Feedback
is Wonderful

Block Diagram

Solving Block

Diagrams

Inverting Amplifier
Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

Instability

Summary

Central Heating:
X: Desired temperature
Y: Actual room temperature
A: Rather complicated system of
boiler and radiators

Steam Engine Governor:
X: Desired Speed
Y: Actual Speed

A: Rotational speed causes weights to fly apart
(centrifugal force) which adjusts the steam

supply via a throttle valve.

Many Other Examples:

A
A

+
J

Thermostat - Boiler+Rads

L

Y=Room Temperature

Economics: Demand? =-Pricet =Supply? =Supply=Demand
Biology: More rabbits =Not enough food =-Less rabbits =Enough food
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Benefits of Negative Feedback

7: Negative Feedback
is Wonderful

Block Diagram

Solving Block
Diagrams
Inverting Amplifier
Negative Feedback
Examples

Benefits of
> Negative Feedback
Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

Instability

Summary

1) Gain Stabilization

The gain of a feedback system is almost entirely determined by the
feedback path and not by the gain of the amplification path. This means
that you can get predictable gains even when the gain of the
amplification path is unknown or time-varying.

2) Distortion Reduction

High power amplifiers are often non-linear, e.g. their gain decreases at
high signal amplitudes. Since the gain of a feedback system does not
depend much on the gain of the amplification path, the non-linearity has
little effect.

3) Interference Rejection

External disturbances have little effect on the output of a feedback
system because the feedback adjusts to compensate for them.
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Gain Stabilization

7: N tive Feedback - - Y A _ 1
is W:ﬁ?lerf?.ll e Galn IS X — 1+AB~ A-1+B X + FE 4 Y
Block Diagram —
Solving Block . Y 1 .
D Sloc If A is very Iarge.then < ~ 5 and the precise value E B j
Inverting Am:::‘-elr( of A makes no difference.
Negative Feedbac
Examples 0 . . .
Benefits of Negative very large” means A~' < B & A > %. So as long as A is much larger
dback : .
Loecbace than the desired gain, its actual value does not matter.
D> Gain Stabilization
Distortion Reduction For an op amp A ~ 10° at low frequencies but less at high frequencies.
Interference Rejection
Cause/Effect Motor Speed Control: 4
.= . T - 7 “ /—/%
Instability A is the “gain” of the amplifier and motor
Summary X + &ﬁﬁ Y
(units = rotation speed per volt = rad.s71V 1), - L
. . pee
A cannot be precisely known: it depends on Sensor

mechanical load and friction.
However this is OK so long as it is large enough.

We can sense the motor speed using gear-teeth and
a magnetic (Hall effect) sensor together with a
circuit that converts frequency to voltage.
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Distortion Reduction -+

7: Negative Feedback If A includes a high-power amplifier and/or 20 o
Blclack Diagram a mechanical system (e.g. a motor) it is 10 "
Solving Bloc . -
Diagrams almost always non-linear. X~ v °
nvertin mplifier " . -10
e y = 152 — 22°: gain decreases at high |z| |
egative Feedbac . 3 20
Examples V= 15x—2x -1 xOu 1
Benefits of Negative . . . 3 '
Feedback r =snt = y = 15sint — 2sin” ¢ s
Gain Stabilization . . [
Distortion =y = 13.5sint + 0.5 sin 3¢ T 1350
> Reduction + .. . 101 —y()
[, The gain is only 13.5 instead of 15 ——Error
. . . . 0
Cause/Effect and harmonic distortion is added at a
nversion ) o -10}
Instability multiple of the original frequency.
Summar . . . - L L )
’ The total harmonic distortion (THD) 0 5 _ 15
: 0.5 __
IS equal to 13.52 — 014%
Use feedback to reduce distortion
U+ Eq00 pA P> X
Put in feedback loop with x100 gain, E 15 3
A=Y =100% and B= & ylox-2x

. . . . Y ~ .
Even though A depends on the signal amplitude, the gainis z ~ 5 = 15.

L
B
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[ Trigonometrical Identities]

The easiest way to derive trigonometrical identities is to use De Moivre's theorem

cos 3t 4+ isin 3t = (cost + isint)® = cos3 t + 3isintcos? t — 3sin? t cost — i sin® t.

Taking the imaginary part of both sides gives
sin 3t = 3sintcos?t —sin® ¢t = 3sint (1 — sin? t) — sin3t = 3sint — 4sin> ¢

and hence

.3, 3. 1
sin®° t = 1 sin t 7 sin 3t.
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Interference Rejection

7: Negative Feedback

is Wonderful

Block Diagram
Solving Block
Diagrams
Inverting Amplifier
Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference
> Rejection

Cause/Effect
Inversion

Instability

Summary

The amplifier output, Y, is affected by interference, Z.
Y = average of 4X and Z weighted by conductances:

B +—A4X+5=Z B 1
Y = O%J@%ZZ = 3.996X + 15574
Z is often much bigger than X (e.g. mains @ 230V).
Ro is amplifier output resistance.

Use feedback to reject interference

Opamp gain = A~ 10°= X = A (U _ Z)

1
L 4X+LZ+10
_ Fo Rz AT 1
Y=o =3809X + 2
Eliminate X: Y = 4U + 155561056 2

Interference reduced by the loop gain ~ 10°.

“Interference” includes any external influence that 4

may affect the output. Y . O y
E.g. the mechanical load changing on a motor or ) @ﬁs .
an opened window in a heating system. | Sensor
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Cause/Effect Inversion

7: Negative Feedback
is Wonderful

Block Diagram

Solving Block
Diagrams
Inverting Amplifier
Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

Instability

Summary

Gainis £ = 4 1~ 1

X ~ 1+AB A +B ° B X+, B[ Y
If multiplying by B is easier than dividing by B, use ' B

feedback to multiply by %.

Division Circuit Y
P

= Y
Multiplier circuit is quite easy to make: T'= P x Q) ) X T>|4i>-‘

Use in feedback loop to give Y = %
P must be +ve to ensure negative feedback.

Phase Lock Loop ;
x| Voltage
Easy to make a voltage controlled . +C Phase |, Contralleg b0
. . omparator )
oscillator with fo =k x v Oscillator

Phase comparator output is v [ (finy — fo)dt so v increases whenever
fo < frn and decreases when fo > frn. When v reaches equilibrium, we
must have fo = fin so v = % X fIN.

We have generated a voltage proportional to the input frequency.

Used in FM radios and in many other circuits.
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Instability

7: Negative Feedback
is Wonderful

Block Diagram

Solving Block
Diagrams
Inverting Amplifier
Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

D> Instability

Summary

The biggest problem of feedback systems is the X
possibility of instability.

Gainis ¥ = 4

X 1+AB"

AB >0
—-1< AB <0
AB = —1

AB < —1

Delays are Death

For a sine wave, a delay anywhere within the loop of
half a period (e.g. 0.5 ms for 1 kHz) is the same as
multiplying by —1. At this frequency the loop gain,
AB, is large and negative so the system becomes
unstable and oscillates.

Quite a common problem: steering a boat, walking
when drunk, balancing a stick.

_E Y
We have four cases:

X 4 Er Y

LY 1 —L J

Normal: % ~ §Y< A B H delay
Increased Gain: < > A
Yy _
7 = 0

Usually saturates or oscillates if AB > 0 at DC

© Science made simple
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Summary

7: Negative Feedback
is Wonderful

Block Diagram

Solving Block
Diagrams
Inverting Amplifier
Negative Feedback
Examples

Benefits of Negative
Feedback

Gain Stabilization
Distortion Reduction

+

Interference Rejection

Cause/Effect
Inversion

Instability
> Summary

Why negative feedback is wonderful:
e The precise value of A does not matter as long as it is big enough
because the gain is determined by the feedback, B.
e It makes no difference if A varies with time or with signal amplitude
(i.e. A is non-linear).
e The effect of external interference at the output is reduced by the
loop
gain, AB.
e |If making a gain B is easy, you can use feedback to make B~!.

The one thing that can go wrong:
e Phase lags or delays can make a feedback system unstable
(oscillate).
e Must make sure that as frequency increases, the loop gain falls
below 1 before the phase shift reaches —180°.
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8: Nonlinear
> Components

Ideal Diode
Operating modes
Switching Point
Bridge Rectifier
Non-ldeal Diode
Halfwave Rectifier

Precision Halfwave
Rectifier

Summary

8: Nonlinear Components
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Ideal Diode

8: Nonlinear
Components

D> Ideal Diode

Operating modes
Switching Point
Bridge Rectifier
Non-ldeal Diode
Halfwave Rectifier

Precision Halfwave
Rectifier

Summary

The characteristic of a component is a
plot of I against V' using the passive
sign convention.

All our components have had
straight-line characteristics.

An ideal diode allows current to flow in one
direction only.

Its characteristic is not a straight line, but is
made from two straight line segments:
piecewise-linear. Each segment is a mode of
operation.

0.2+ /
oy
0.1
1 \ \ \
1 1V
O .
-0.2 —
0.2
1
0.1
I
| \ \
VT - 1 Vo
-0.1 —
I always in
the arrow
direction -0.2 -

Each mode applies only when a particular condition is true:

Mode

Conducting (or “forward bias” or “on")
Non-conducting (or “reverse bias” or “off")

Condition  Equation

I>0 V=0
V <0 I =0
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Operating modes

o onlinear To analyse a circuit with a diode in it, you first guess which mode it is
;’ea' Diode ) operating in, solve the circuit and then check the condition.

Operating modes .. .
sW;tcph;.,gt Point If you guessed wrongly, the condition will not be met.

Bridge Rectifier
Non-ldeal Diode

Halfwave Rectifier Mode Condition  Equation
Sl Conducting ~ 1>0  Vp=0
Summary Non-conducting Vp <0 I=0

Voltage across diode is Vp = U — X.

Co e U X
Current through diode is I = 5- mA. > ?I
Assume Conducting Mode = Vp =0 —6V<> ok
Vpb=0= X=U=-6=1=-3 =
but condition is I > 0 so bad guess ' '

Assume Non-conducting Mode = I =0
I=0= X=2I=0=Vp=U—-—X =-6

condition is Vp < 0 so good guess Anode N Cathode

Current flows from anode to cathode.
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Switching Point

8: Nonlinear
Components

Ideal Diode
Operating modes
> Switching Point
Bridge Rectifier
Non-ldeal Diode

Halfwave Rectifier
Precision Halfwave
Rectifier

Summary

How does X change with U 7 ?
o 1k X
Voltage across diode is Vp =Y — 3. m
Current through diode is Ip = 2= mA. Y Ak
Assume Conducting Mode = Y =3
X-U , X-3 | X U SV
KCL: = +X1 1212:0 @
= X =1iU+
6 _r
Ip=23=1U-1 —
Ip>0< U>6
Assume Non-conducting Mode 4
= Ip =0 z,
Potential Div: X =Y = U <
Vp=Y -3=1U-3

0 5 10
Vp<0&< U<6 U (Volts)
Diode switches between regions where the graphs intersect (U = 6).

At this point both the diode equations, Vp = 0 and Ip = 0, are true.
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Bridge

Rectifier

8: Nonlinear
Components

Ideal Diode
Operating modes
Switching Point

> Bridge Rectifier
Non-ldeal Diode
Halfwave Rectifier

Precision Halfwave
Rectifier

Summary

Bridge Rectifier: 4 diodes:

D1 and Dy both point towards node X.
D3 and D4 both point away from ground.

The input voltage is U = B — A.

Case1: U >0. Dy,Dyon= X =U
Check D1, Dy: L =Lt =1=:>0
Check Do, D3: Vo =V3=—-U <0

All diodes OK

Case 2: U <0. Dy,D3gon =X =-U
Check Dz, Dgi 12,3 =1 = % > 0
Check Dl, Dy Vi=Vy=U<0
All diodes OK

X is always equal to |U|: this is an absolute
value circuit.

If U is a sine wave, then X is a full-wave
rectified sine wave with twice the frequency.

x (Volts)

1
1 . : .

0 5 10 15
Time

aYavavaval

Time
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Non-ldeal Diode

8: Nonlincar An ideal diode allows has V' =0 20 -
omponents . ) . " 1N4148

Ideal Diode whenever it is “on”. _

Operating modes 1 <é: 10t

Switching Point V =

Bridge Rectifier

> Non-Ideal Diode I always in 0 : :

Halfwave Rectifier the arrow -1 -0.5 0 0.5 1

Precision Halfwave direction V (Volts)

Rectifier . . . .

Summary A real diode has a voltage drop that depends approximately logarithmically
on the current: it increases by about 0.1V for every 50-fold increase in
current.

For a wide range of currents we can treat V' as almost constant:
(a) For low-current circuits (e.g I < 20mA): V ~0.7V.
(b) For high-current circuits: V >~ 1.0V.

The two regions of operation are now:

Region Condition  Equation
Conducting Mode (“on” I>0 V =0.7
Non-conducting Mode (“off”) V < 0.7 I=0
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Halfwave Rectifier

& Nonlinear A halfwave rectifier aims for X = max(U, 0) v,

Ideal Diode ‘

Op.erat:ing m?des (a) U > 07 X

i P Diode on, X =U — 0.7, [ = 52T > 0 U I

Non-ldeal Diode +

D> Halfwave Rectifier (b) U < 07 <—> 2k
recision Halfwave .

Eectiﬁer Diode Off, I = O, X = O, VD =U < 0.7 I o

Summary —

We actually have X = max(U — 0.7,0)

(1) u(t) = 20sinwt 20
The 0.7V drop makes little 5
. S 0
difference. x
(2) u(t) = sinwt % 5 T%ﬁ’e 15 20
The 0.7V drop makes a big L
difference. ) /\ /\ Q
NV,
R 5 10 15 20
Time
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Precision Halfwave Rectifier

8: Nonlinear
Components

Ideal Diode
Operating modes
Switching Point
Bridge Rectifier
Non-ldeal Diode
Halfwave Rectifier

Precision Halfwave
> Rectifier

Summary

KCL@A: &2 4+ 0=X —¢
iY——U
.Y — Y — _
KCLOY: L + L + 1, =0

=L =Y>0
Check Dy: Vi = -U - 0.7 < 0.7
Both diodes OK
Output: X =-Y =U

Case 2: U<O D1 on =W =0.7

KCL@Y: X=0 +K—O 0=Y =0
I@L@A7F+ 04—, =0

= [ = —= >O
Check Dy: Vo = Y—W = —0.7 < 0.7

Both diodes OK
Output: X =-Y =0

Both op-amps have negative feedback, so A = B = 0.
Second op-amp is an inverting amplifier so X = —Y.

Case 1: U>O Dgon:>W Y —0.7

10k , 10k
U

JT:+

Note: I,,V, apply to diode n

So X = max(U, 0)

Putting diodes in a feedback
loop allows their voltage
drops to be eliminated.
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Summary

8: Nonlinear
Components

Ideal Diode
Operating modes
Switching Point
Bridge Rectifier
Non-ldeal Diode
Halfwave Rectifier

Precision Halfwave
Rectifier

> Summary

Beware: a nonlinear circuit does not obey superposition

|deal diode:
o Two regions of operation:
> Conducting Mode ( = "“on"): V.=0and I >0
> Non-conducting Mode ( = “off"): IT=0and V <0

Solving a diode circuit:
o (a) Guess region
o (b) Solve circuit: assuming V=0o0r I =0
o (c) Check condition: either I >0 or V <0

Real diode: V' ~ 0.7 in Conducting Mode (~ 1.0 for high currents)
Fullwave and halfwave rectifier circuits

Precision Rectifier Circuit
o Use an opamp to eliminate the 0.7V diode drop.

For further details see lIrwin Ch 17.
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9: Capacitors and
> Inductors

Capacitors

Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors

Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

Summary

9: Capacitors and Inductors

E1.1 Analysis of Circuits (2017-10110)

Capacitors and Inductors: 9 — 1 / 12



Capacitors

9: Capacitors and
Inductors

> Capacitors
Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors

Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

Summary

A capacitor is formed from two conducting plates separated by a thin
insulating layer.

If a current 7 flows, positive change, ¢, will
accumulate on the upper plate. To preserve
charge neutrality, a balancing negative charge
will be present on the lower plate.

There will be a potential energy difference (or voltage v) between the plates
proportional to g.

v = %q where A is the area of the plates, d is their separation and ¢ is the
permittivity of the insulating layer (eg = 8.85PF/m for a vacuum).

The quantity C = £¢ is the capacitance and is measured in Farads (F),
hence ¢ = Ch.

The current, i, is the rate of charge on the plate, hence the

capacitor equation: ¢ = % = C‘Cll—g.
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Types of Capacitor

9: Capacitors and
Inductors

Capacitors

> Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors

Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

Summary

Capacitor symbol represents the two separated
plates. Capacitor types are distinguished by the
material used as the insulator.

Polystyrene: Two sheets of foil separated by a
thin plastic film and rolled up to save space.
Values: 10 pF to 1 nF.

Ceramic: Alternate layers of metal and ceramic
(a few pm thick). Values: 1nF to 1 uF.

Electrolytic: Two sheets of aluminium foil
separated by paper soaked in conducting
electrolyte. The insulator is a thin oxide layer
on one of the foils. Values: 1 uF to 10 mkF.

Electrolytic capacitors are polarised: the foil with the oxide layer must
always be at a positive voltage relative to the other (else explosion).

(YRR A

Negative terminal indicated by a curved plate in symbol or “-".
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Inductors

9: Capacitors and
Inductors

Capacitors

Types of Capacitor
> Inductors

Passive Components

Series and Parallel
Inductors

Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

Summary

Inductors are formed from coils of wire, often I
around a steel or ferrite core.

The magnetic flux within the coil is ® = “]\[Az where N is the number of
turns, A is the cross-sectional area of the coil and [ is the length of the coil

(around the toroid).

(1t is a property of the material that the core is made from and is called its
permeability. For free space (or air): po = 4m x 1077 = 1.26 #H /m, for
steel, u ~ 4000py = 5mH/m.

uN?2 Adz
l

“]\ZQA, in Henrys (H).

Ldz

From Faraday's law: v = chif —

We measure the inductance, L =
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Passive Components

9: Capacitors and
Inductors

Capacitors
Types of Capacitor
Inductors

Passive
> Components
Series and Parallel
Inductors
Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

Summary

We can describe all three types of passive component by the relationship
between V' and I using, in each case, the passive sign convention.

Resistor: v = R I

Inductor: v = L% I

. Cog dv
Capacitor: ¢t = C %

Notes: (1) There are no minus signs anywhere whatever you were taught at
school.

(2) We use lower case, v, for time-varying voltages.

E1.1 Analysis of Circuits (2017-10110) Capacitors and Inductors: 9 —5 / 12



Series and Parallel Inductors

9: Capacitors and
Inductors

Capacitors

Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors
Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

Summary

V= vy + V2= L1%'—I-L2%
= (L —I-LQ)%

Same equation as a single inductor of value L; + Lo

di _ d(iitiz) _ dig

dt — dt

— v v
o, T 1,
1 di

V= 71 T 7t
LTIy

Same as a single inductor of value

dio
dt + dt

— 1 1 I I
_U(L1+L2) 1 2

[

1
1 1
1713

Inductors combine just like resistors.
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Series and Parallel Capacitors

9: Capacitors and
Inductors L =11 +12= Cl + 02 N
Capacitors p fl *I
Types of Capacitor — av 1 2
Inductors (Cl T 02) dt 14
Passive Components C, C,
Series and Parallel
Inductors
Series and Parallel
Capacitors
gurre.nt./Voltage Same equatlon as 4 S|ng|e CapaCItOI’ Of Value Cl + 02
ontinuity
Average
Current/Voltage
Buck Converter dv __ d(vitva) dvl dUQ /
Power and Energy dt dt — =+ >
Summary A C
ST 1 1 —
_Cl—I_CQ Z(Cl—l_Cg) Vol ——
. 1 dv V
V=TT 0
€1 C2 C,
S | fralue 1 = GG T
' : _ G0y
dame as a singie CapaCItOI’ OoT value C%"‘CLQ C1+C5

Capacitors combine just like conductances (i.e. parallel capacitors add).
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Current /Voltage Continuity

: itors and . .
 oopacitors 2 Capacitor: i = C% I
Capacitors
D e G For the voltage to change abruptly M
Inductors
Passive Components dv __ .
Series and Parallel dt 0 = 1 = Q.
Inductors
Seri nd Parallel 1
eores ane Paralle This never happens so ...
Current/Voltage
ifr::"“'*y The voltage across a capacitor never changes instantaneously.
;urr:r:/vdtase Informal version: A capacitor “tries” to keep its voltage constant.
uc onverter
Power and Energy
Summary .
Inductor: v = L% I
For the current to change abruptly v

di __ —
E—OO:>’U—OO.

This never happens so ...

The current through an inductor never changes instantaneously.
Informal version: An inductor “tries’ to keep its current constant.
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Average Current/Voltage

9: Capacitors and
Inductors

Capacitors

Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors
Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

Summary

For a capacitor ¢ = C%. Take the average of both sides: ]
4>_
1 b2 .3, 1 t2 ~dv g0 C  v(t2)
to—t1 Jitq idt = to—t1 Jitq Cﬁdt_ to—t1 fv(tl) dv Vv ——
C v(t C
— to—tq [U]Ugtjg — to—1t1 (U(t2) T U(tl))
(1) If v(t1) = v(t2) then the average vt
current exactly equals zero.
(2) If v is bounded then the average current
—>Oas(t2—t1)—>oo. | |
fl t2 5

The average current through a capacitor is zero and, likewise, the average
voltage across an inductor is zero. The circuit symbols remind you of this.

“Average”’ can either be over an exact number of periods of a repetitive
waveform or else the long-term average (provided v and ¢ remain bounded).

“v is bounded” means |v| always stays less than a predefined maximum
value.
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Buck Converter

9: Capacitors and
Inductors

Capacitors

Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors

Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
> Buck Converter
Power and Energy

Summary

[Do not memorize this circuit]

A buck converter converts a high
voltage, V, into a lower one, Y.

The switch, S, closes for a fraction a
of the time. a is the duty cycle and
1

is 5 in this example.

When S is closed, x = v, and a
current 77, flows.

When S opens, the current i;, cannot
change instantly and so it must
flow through the diode (we
assume the diode is ideal).

, S x LAk Iy y
¥ R
O —
Switch " | ]
V
X
g
[L T~
2SN B T
0
Y - —
I _

The average value of = is aV' = the average value of y must also be aV.

. aV
The average current through R is %=

so, since the average current through

aV

C must be zero, the average current ¢, must also be “%-.

C‘;—? —=i; —ir = if C is large, then the variations in y will be very small.
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Power and Energy

9: Capacitors and
Inductors

Capacitors

Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors

Series and Parallel
Capacitors
Current/Voltage
Continuity

Average
Current/Voltage
Buck Converter

> Power and Energy

Summary

Electrical power absorbed by any component at the instant ¢ is v(t) x i(?).

So total energy absorbed between times ¢; and t5 is W = fttitl vi dt.

For a capacitor ¢ = Cf;;, SO )i

t2 v U(tg)
W = Cft:tl Uccil_tdt Cf —u(ty) Y —

—C [%,UQ}U(tQ): %C (UQ(tQ) _ U2(t1)) N

v(t1)

If v(t1) = v(t2) then there has been no nett
V(1)
energy absorbed: all the energy absorbed
when the voltage rises is returned to the
circuit when it falls.

tl Itz 5
The energy stored in a capacitor is £Cv? and likewise in an inductor 1 Li?.

If v and 7 remain bounded, then the average power absorbed by a capacitor
or inductor is always zero.
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Summary

9: Capacitors and
Inductors

Capacitors

Types of Capacitor
Inductors

Passive Components

Series and Parallel
Inductors

Series and Parallel
Capacitors
Current/Voltage
Continuity
Average
Current/Voltage
Buck Converter
Power and Energy

> Summary

Capacitor:
o 1= Cfl—g
o parallel capacitors add in value
o average 7 is zero, v never changes instantaneously.
o average power absorbed is zero
Inductor:
o V= L%
o series inductors add in value (like resistors)
o average v is zero, i never changes instantaneously.
o average power absorbed is zero

For further details see Hayt Ch 7 or Irwin Ch 6.
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10: Sine waves
> and phasors

Sine Waves

Rotating Rod
Phasors

Phasor Examples +
Phasor arithmetic
Complex Impedances
Phasor Analysis +
CIVIL

Impedance and
Admittance

Summary

10: Sine waves and phasors

E1.1 Analysis of Circuits (2017-10213)

Phasors: 10 -1 / 11



Sine Waves

2D Sine waves and For inductors and capacitors i = Cf;t’ and v = LdZ so we need to
> Sine Waves differentiate i(¢) and v(t) when analysing circuits contammg them.
Rotating Rod

Phasors . L.

Phasor Examples  + Usually differentiation changes the 1

Phasor arithmetic h _F _F g O/\/\/\/\/
Complex Impedances shape€ Oor a waverorm. 1 - 5 3 y
Phasor Analysis + . t

cIviL For bounded waveforms there is 3

Impedance and . 3 0—‘ ’7
Admittance only one exception: S . . . . .
Summary 0 1 f 3 4

v(t)
o

v(t) =sint = 2 = cost :

same shape but with a time shift. _1W
sint completes one full period every
time t increases by 2.

dv/dt
-

sin 27 ft makes f complete repetitions every time ¢ increases by 1; this
gives a frequency of f cycles per second, or f Hz.

We often use the angular frequency, w = 2x f instead.

w is measured in radians per second. E.g. 50 Hz ~ 314 rad.s™!
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Rotating Rod

20: Sine waves and A useful way to think of a cosine wave is as the

Sine Waves projection of a rotating rod onto the horizontal axis. hY

> Rotating Rod :
Phasors .

For a unit-length rod, the projection has length cos 6.

Phasor Examples +
Phasor arithmetic

Complex Impedances If the rod is rotating at a speed of f revolutions per
Phasor Analysi + . . . .
il second, then 6 increases uniformly with time:

Impedan nd _

Admittance 0 =2mft.

Summary

The only difference between cos and sin is the starting position of the rod:

v = cos 27 ft v = sin 27 ft = cos (27 ft — §)

sin 27 ft lags cos 2w ft by 90° (or Z radians) because its peaks occurs 1 of
a cycle later (equivalently cos leads sin) .
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Phasors

10: Sine waves and
phasors

Sine Waves

Rotating Rod

> Phasors

Phasor Examples +
Phasor arithmetic
Complex Impedances
Phasor Analysis +
CIVIL

Impedance and
Admittance

Summary

If the rod has length A and starts at an angle ¢ then the projection onto
the horizontal axis is

Acos (2w ft + ¢)
= Acos¢pcos2mft — Asin¢sin 27 ft y. ™ 4
= X cos2n ft — Y sin 2w ft

At time ¢t = 0, the tip of the rod has coordinates
(X,Y)=(Acos¢, Asing).

If we think of the plane as an Argand Diagram (or complex plane), then the
complex number X + jY corresponding to the tip of the rod at ¢ =0 is
called a phasor.

The magnitude of the phasor, A = /X2 + Y2, gives the amplitude (peak
value) of the sine wave.

The argument of the phasor, ¢ = arctan % gives the phase shift relative
to cos 27 ft.
If ¢ > 0, it is leading and if ¢ < 0, it is lagging relative to cos 27 ft.
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Phasor Examples +

10: Sine waves and
phasors

Sine Waves

Rotating Rod

Phasors

> Phasor Examples +
Phasor arithmetic
Complex Impedances
Phasor Analysis +
CIVIL

Impedance and
Admittance

Summary

V=1, f=50Hz ;
v(t) = cos 2 fi — \/W

0 0.02 0.04 0.06
t

sin 27Tft {/ 8:/\/\/\/

0 0.02 0.04 0.06

v
v(?)

[

t

V= —1-05j = 1.12/ — 153° | 1
v(t) = —cos 2w ft + 0.5 sin 27 ft e §OIM/\
— 1.12 cos (27 ft — 2.68) o o o
V=X+jY V= A/p = Aed?
v(t) = X cos 2w ft — Y sin 2w ft v(t) = Acos (27 ft + ¢)

Beware minus sign.

A phasor represents an entire waveform (encompassing all time) as a single
complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V.
A waveform is time-varying, so we use a small letter: v(?).

Casio: Pol(X,Y) — A, ®, Rec(A, ) — X,Y. Saved — X & Y mems.
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[Algebraic Phasor<+Waveform Mapping]

A phasor is a complex number, V', that uniquely defines a waveform, v(t), via the mapping V =

Ael? «— v(t) = Acos (2nft + ¢). It is sometimes convenient to give an algebraic formula for this.

For the direction V' — v(t) the mapping is easy:

v(t) = R (Vel2™ft) = 2 (V + V*)cos2rft+ =5 (V — V*)sin2r ft.

The reverse mapping, V <— v(t) is a bit more complicated and we use a technique that you will also
use in the Maths of Fourier transforms. The mapping is given by

1
V= 2f/f v(t)e 127 tqg.
0

To confrm that this is true, we can substitute v(¢) = A cos (27 ft + ¢) and do the integration:

1 1
0
1
— Af/ €J¢_|_€ jam ft— qu) dt = eycb_l_Afe—yqb/ e—JATft gy
0
— 19 1 .
—jamn f 0 —jdr f
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Phasor arithmetic

10: Sine waves and
phasors

Sine Waves
Rotating Rod
Phasors

Phasor Examples +

> Phasor arithmetic
Complex Impedances

Phasor Analysis +

CIVIL

Impedance and
Admittance

Summary

Phasors Waveforms
V=P+jQ v(t) = Pcoswt — @ sinwt
where w = 27 f.
aV a X v(t) = aP coswt — a@ sin wt
Vi+Vs v1(t) + va(t)

Adding or scaling is the same for waveforms and phasors.

: . ‘é—qg = —wPsinwt — w@ coswt
V= (._WQ) J (wP) = (—wQ) coswt — (wP) sinwt
= jw (P +3Q)
= JwV
Differentiating waveforms corresponds to multiplying jov

phasors by jw. \/V

Rotate anti-clockwise 90° and scale by w = 27 f.
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Complex Impedances

10: Sine waves and ReSiStOI’: ;
phasors
Sine Waves . v
Rotating Rod ’U(t) = RZ(t) — V = RI — T — R
Phasors V
Phasor Examples +
Phasor arithmetic
Complex
D> Impedances |ndUCt0r: I
Phasor Analysis + 5 v
CIVIL _ i . .
Impedance and U(t> T Ldt = V T ]WLI = I ]CL)L VT
Admittance
Summary
Capacitor: ;
—>_
; dv - 1% 1
i(t) =C% = I =juwCV = = = 5.0 VT .

For all three components, phasors obey Ohm's law if we use the complex
impedances jwlL and g¢+c as the “resistance” of an inductor or capacitor.
If all sources in a circuit are sine waves having the same frequency, we can
do circuit analysis exactly as before by using complex impedances.
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Phasor Analysis

10: Sine waves and
phasors

Sine Waves

Rotating Rod

Phasors

Phasor Examples +
Phasor arithmetic
Complex Impedances
> Phasor Analysis +
CIVIL

Impedance and
Admittance

Summary

Given v = 10 sin wt where w = 27 x 1000, find

U(j(t).
(1) Find capacitor complex impedance
_ 1 _ 1 _ :
24 = 550 = gasjxio—i — 1992

(2) Solve circuit with phasors

- 7z
VC =V X RiZ
 1ns 15925
= —107 X 1550-1593;

— 4.5 7.2j =847/ —122°
ve = 8.47 cos (wt — 122°)

(3) Draw a phasor diagram showing KVL:
V =-10j
Vo =—-4.5—-7.23
Ve=V —Vo=45—28j =53/ — 32°

Phasors add like vectors

05 1 15 2

—10
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[Differential Equation Analysis]

To solve the problem form the previous slide without using phasors, we define ¢ to be the current flowing
clockwise and use the capacitor equation 7 = C'ds—tc.

From KVL, we have v = vp +vo = 1R + ve.

. . . . . . . dv __ _ pdi 1 -
Differentiating and applying the capacitor equation gives 7= = 10w coswt = Rg; + &4

We need to find the particular integral for the above equation. To do so, we guess that the answer will
be of the form ¢ = A coswt + Bsinwt and substitute it into the equation (multiplied by C).

10Cwcoswt = RC (—Awsinwt + Bw coswt) + (A coswt + B sinwt)
= (A4 RCBw)coswt + (B — RCAw) sinwt

which gives two siultaneous equations: A + RCwB = 10Cw and —RCwA + B = 0. Substituting
values for R, C' and w gives A+ 0.628 B = 0.00628 and —0.628A + B = 0. Solving these simultaneous
equations gives A = 4.5mA and B = 2.8 mA.

The resistor voltage is therefore vg = 1R = 4.5coswt + 2.8sinwt and therefore, from KVL, the

capacitor votage is vo = v —vp = —4.5coswt + 7.2 sin wt.

Thus we get the same answer as using phasors but with more work even for a simple circuit like this.
For more complicated circuits the difference is much much bigger.
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CIVIL

2D Sine waves and Capacitors: 7 = C‘Cll—"; = ] leads V

Sine Waves di

Rotating Rod Inductors: v =Lg; =V leads I

Phasors

Phasor Examples  + Mnemonic: CIVIL = “In a capacitor I lead V but V leads I in an inductor”.

Phasor arithmetic
Complex Impedances

Phasor analvsis  +  COMPLEX ARITHMETIC TRICKS:

> civiL
ek (1) jxj=—jx—j=—1
Summary (2) % _ _]

(3) a+ jb=1rs0 = re’?
where 7 = v/a? + b2 and 6 = arctan 2 (£180° if a < 0)
(4) r£0 = re?? = (rcos®) + j (rsinf)
(5) aZ8 x b = abZ (6 + ¢) and 55 = £2(0 — ¢).
Multiplication and division are much easier in polar form.

(6) All scientific calculators will convert rectangular to/from polar form.

Casio fx-991 (available in all exams except Maths) will do complex
arithmetic (+, —, x, +—, 22, %, |z|, 2*) in CMPLX mode.

Learn how to use this: it will save lots of time and errors.
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Impedance and Admittance

10: Sine waves and
phasors

Sine Waves

Rotating Rod

Phasors

Phasor Examples +
Phasor arithmetic
Complex Impedances
Phasor Analysis +
CIVIL

Impedance and
Admittance

Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + jx Reactance
Z=R+jX (Q)

Z)® = R? + X? /Z = arctan %
(2) Admittance = m = Conductance + jx Susceptance
Y = - = G+ jB Siemens (S)
Y]? = |Z1|2 = G* + B? LY = —/Z = arctan &
Note:
_ p_1_ _1 _ _ R . —X
Y—G—I-]B— Z7 R+jX  R2+ X2 +]W
__ R __ R
S0 G =pixs = g
B — —-X _ =X

RIXZ — (7]

Beware: G # % unless X = 0.
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Summary

10: Sine waves and
phasors

Sine Waves

Rotating Rod

Phasors

Phasor Examples +
Phasor arithmetic
Complex Impedances
Phasor Analysis +
CIVIL

Impedance and
Admittance

> Summary

Sine waves are the only bounded signals whose shape is unchanged by
differentiation.

Think of a sine wave as the projection of a rotating rod onto the
horizontal (or real) axis.
o A phasor is a complex number representing the length and position
of the rod at time ¢t = 0.
o fV=a+jb=rs0=re? then
v(t) = acoswt — bsinwt = rcos (wt + 0) = RN (Vel?)
o The angular frequency w = 2x f is assumed known.

If all sources in a linear circuit are sine waves having the same
frequency, we can use phasors for circuit analysis:
o Use complex impedances: jwlL and gc+c
o Mnemonic: CIVIL tells you whether I leads V' or vice versa
(“leads” means “reaches its peak before”).
o Phasors eliminate time from equations ©, converts simultaneous
differential equations into simultaneous linear equations ©@©O.
o Needs complex numbers @ but worth it.

See Hayt Ch 10 or lrwin Ch 8
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11: Frequency
Responses

Frequency Response
Sine Wave Response
Logarithmic axes
Logs of Powers +

Straight Line
Approximations

Plot Magnitude
Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response
+

RCR Circuit

Summary

11: Frequency Responses
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Frequency Response

11: Frequency
Responses

Frequency
> Response

Sine Wave Response
Logarithmic axes
Logs of Powers +

Straight Line
Approximations

Plot Magnitude
Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response

+
RCR Circuit

Summary

If x(t) is a sine wave, then y(t) will also be a sine
wave but with a different amplitude and phase
shift. X is an input phasor and Y is the output
phasor.

Y jwc 1

The gain of the circuit is 5 = Riioc = FoROT

x R Y

This is a complex function of w so we plot separate graphs for:

x| = ferer =

Phase Shift: / (%) —

Magnitude:

|Gain|
o
O
Phase (rad)

0

-0.257

0 * ! ! * ! -0.57

0 1 2 3 4 5
w RC

Magnitude Response

—/ (jwRC + 1) = —arctan (2£<)

1

0 1 2 3 4 5
w RC

Phase Response
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Sine Wave Response

11: Frequency
Responses

Frequency Response
Sine Wave

> Response

Logarithmic axes

Logs of Powers +

Straight Line

Approximations

Plot Magnitude

Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response

+
RCR Circuit

Summary

RC = 10ms

Y __ 1

1

X JwRCH+1 —

0.01jw+1

w=>50= % = 0.89£ — 27°

w =100 =
w = 300 =

<< <

= 0.714 — 45°

= 0324 - T72°

0

100

200 300 400 500
w (rad/s)

 R=10k
C=17]

blue, y=red

xX=

X
0
Y
2-0.2 X-Y
E
-0.4
®=300
0 0.5 1
Real
w = 300 rad/s, Gain = 0.32, Phase = -72°
1
0.5¢
O L
0.5¢
0 20 40 60 80 100 120
time (ms)
0
20t
40t
60}
-80 L
0 100 200 300 400 500
w (rad/s)

The output, y(t), lags the input, z(t), by up to 90°.
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Logarithmic axes

11: Frequency
Responses

Frequency Response
Sine Wave Response
D> Logarithmic axes
Logs of Powers +

Straight Line
Approximations

Plot Magnitude
Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response

+
RCR Circuit

Summary

We usually use logarithmic axes for frequency and gain (but not phase)
because % differences are more significant than absolute differences.

E.g. 5kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even
though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in decibels (dB) = 201log;, %
. x R Y
Common voltage ratios: 4 /1 !
2| 01 [ o5 ] Vo5 | 1] v2|2]10] 100 “T
dB || -20 | 6 | -3 [0| 3 |6 |20 40 =
o 0 Note that O does not
T .0 g exist on a log axis and
5 @ -0.257
& -20 £ so the starting point of
30 T ; " 0.5m : _ the axis is arbitrary.

w RC w RC

Note: P oc V2 = decibel power ratios are given by 101ogy %
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Logs of Powers

11: Frequency
Responses

Frequency Response
Sine Wave Response
Logarithmic axes

D> Logs of Powers +

Straight Line
Approximations

Plot Magnitude
Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response

+
RCR Circuit

Summary

H = c(jw)" has a straight-line magnitude graph and a constant phase.

Magnitude (log-log graph):

|H| = cw” = log |H| =log|c| + rlogw
This is a straight line with a slope of r.
¢ only affects the line's vertical position.

If |H| is measured in decibels, a slope of r
is called 6 dB/octave or 20r dB/decade.

Phase (log-lin graph):

LH=/j"+Zc=rx5% (+mifc<0)

The phase is constant Vw.

If ¢ > 0, phase = 90° x magnitude slope.

Negative ¢ adds +180° to the phase.

Note: Phase angles are modulo 360°, i.e.

+180° = —180° and 450° = 90°.

H|

ZH (rad)

100

10

1

T

(jw) o , 0.2(jw)?

0.5 ()

0 8(jw)°
057 65(w)”

=TI . R

1 10 100
w (rad/s)
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[Octaves and Decades|

An “octave” is a factor of 2 in frequency; for example, 20 Hz is one octave greater than 10 Hz. Similarly
a "“decade” is a factor of 10 in frequency; for example, 100 Hz is one decade greater than 10 Hz.

The number of decades between any two frequencies can be calculated by taking log;, of the frequency

ratio. Thus, for the example given above, log;, (110001?;) = log;y (10) = 1decade. A slightly more

25 Hz 25
that 13kHz is 2.716 decades greater than 25 Hz.

complicated example is log;, (13kHZ> = log;g (13000) = log (520) = 2.716 decades so this means

As we shall discover in this lecture, frequency response graphs can be approximated as a series of
straight lines whose gradients are easy to calculate. In particular magnitude response graphs can be
approximated as a series of straight lines with gradients that are integer multiples of 20 dB per decade
and phase response graphs can be approximated as a series of straight lines with gradients that are
integer multiples of 0.257 radians per decade. This means that if you know the magnitude or phase at
one frequency, you can calculate how much it has changed at any other frequency by multiplying the
gradient of the line by the number of decades by which the frequency has changed.

Calculating the number of octaves between any two frequencies is done in the same way except that you
- 100 H 100 Hz \ .
must take a base-2 log. Thus between 10 Hz and 100 Hz is log, ( 10 sz) = log (TI‘IZZ) ~logip2 =

3.322 logq (%) = 3.322 octaves. Thus one decade is equal to 3.322 octaves.
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Straight Line Approximations

11: Frequency
Responses

Frequency Response
Sine Wave Response
Logarithmic axes
Logs of Powers +

Straight Line
> Approximations

Plot Magnitude
Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response
+

RCR Circuit

Summary

ajw for |aw| > |b)

Key idea: (ajw+b)~ ¢, " aw| < [b)

Gain: H(]W) = m

Low frequencies (w < 7=): H(jw)

High frequencies (w > 5): H(jw) = jw}f{C:> |H(jw)| =

Approximate the magnitude response
as two straight lines intersecting at the

corner frequency, w. = 5.

At the corner frequency:

|Gain| (dB)

N
o
T

0.1/RC 1/RC 10/RC

w (rad/s)

(a) the gradient changes by —1 (= —6 dB/octave = —20 dB/decade).

(b) [H(jwe)| = |$‘ _ %

= —3dB (worst-case error).

A linear factor (ajw + b) has a corner frequency of w, = ‘2]
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Plot Magnitude Response

11: Frequency
Responses

Frequency Response
Sine Wave Response
Logarithmic axes
Logs of Powers +

Straight Line
Approximations

Plot Magnitude
> Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response
+

RCR Circuit

Summary

The gain of a linear circuit is always a rational polynomial in jw and is
called the transfer function of the circuit. For example:

H(]w) = 60(jw?2+2720(jw? _ 20ju.J(jw+1.2)
(Jw)°+165(jw)“+762(jw)+600 (Jw+1)(jw+4)(jw+50)

Step 1: Factorize the polynomials of

Step 2: Sort corner freqs: 1,4,12,50 5

Step 3: For w < 1 all linear factors equal £t

their constant terms: 40¢ . . . .
|EI\Q¢2OWX12::ﬁL2aﬂ. 0.1 1 w@ﬁﬂ 100 1000

1x4x50

Step 4: For 1 < w < 4, the factor (jw + 1) =~ jw so

|H| o 20@x12 1 9,0 = +1.58dB.

wx4x50
Step 5: For 4 < w < 12, |H| ~ 20%wx12 _ 4 g,—1,

w X w x50
Step 6: For 12 < w < 50, |H| ~ 22X — (.40” = —7.96 dB.
Step 7: For w > 50, |H| ~ ﬁ”ﬁ = 20w~ 1.

At each corner frequency, the graph is continuous but its gradient changes
abruptly by +1 (numerator factor) or —1 (denominator factor).
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Low and

High Frequency Asymptotes

11: Frequency
Responses

Frequency Response
Sine Wave Response
Logarithmic axes
Logs of Powers +

Straight Line
Approximations

Plot Magnitude
Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response
+

RCR Circuit

Summary

You can find the low and high frequency asymptotes without factorizing:

N 60(jw)?+720(jw) - 20jw(jw+12)
H(jw) = 3(jw)3+165(jw)2+762(jw)+600 — (jw+1)(jw+4)(jw+50)
ol 0.57
g-ZO- E ot
T N
40 . . . . -0.57 b . . : .
0.1 1 10 100 1000 0.1 1 10 100 1000
w (rad/s) w (rad/s)
Low Frequency Asymptote:
From factors: Hyp(jw) = % = 1.2jw
Lowest power of jw on top and bottom: H (jw) ~ 722((){)“) = 1.2jw
High Frequency Asymptote:
From factors: Hyr(jw) = (jigﬁi‘%)w) = 20 (jw) "
L \2
Highest power of jw on top and bottom: H (jw) =~ % =20 (jw) "
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Phase Approximation +

11: Frequency L . - 1
Responses Galn' H(]w) _ ij—CH X R Y
Frequency Response =] | e
Sine Wave Response - 1 .
S R e Low frequencies (w < 55=): B
Logs of Powers + ) C—
Straight Line H(]UJ) ~ 1:> 41 = O
Approximations [
Plot Magnitude 1 1 1 -
Response 1 I L - ) ~ 1 — _ T
e ek High frequencies (w > 75): H(jw) = 55= 4£J 2
Frequency
Asymptotes .

e Approximate the phase response as 0
D Approximation  +  three straight lines.
Plot Phase Response %_0 os|
+ : T
RCR Circuit By chance, they intersect close to
Summar 057t

- 0.1w, and 10w, where w, = 7.
w (rad/s)
Between 0.1w. and 10w, the phase changes by —% over two decades.

This gives a gradient = —7 radians/decade.

(ajw =+ b) in denominator
= Agradient = F% /decade at w = 10F! ]3‘

The sign of Agradient is reversed for (a) numerator factors and (b) 2 < 0.
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[Phase Approximation ++]

Like the magnitude response, the phase response can be approximated by a graph that consists of a
sequence of straight line segments that are joined at “corners’. For this to be true, we need to plot the
phase response using a linear axis for the phase but a logarithmic axis for the frequency.

The previous slide showed the phase response of a filter whose frequency response, H(z), has a single
linear factor in the denominator. On the next slide this is extended to a more complicated frequency
response.

Recall that the argument of a complex number is / (a + jb) = tan—! g and £

a+3b
Therefore if the frequency response is H(jw) = m, then the phase is given by ZH(jw)

— —tan— !

| &l

—tan—! wRC which is plotted as the blue curve. At low frequencies, this tends to zero (since tan=! 0 =

0) and at high frequencies it tends to —% (since tan™!co = 7). The magnitude response graph has

a corner frequency at w, = R_lC and at this frequency, ZH (jw:) = —tan=11 = — 7

It turns out that we can approximate this curve with three straight lines which meet at two “phase
response corner frequencies” of 0.lw. and 10w.. Since the frequency range 0.lw. to 10w, is two
decades (a factor of 100), the gradient of the central segment of the approximation must be —7%
radians/decade. This approximation is not actually the best possible approximation using 3 straight
lines but it is very close and much easier to remember that the optimum approximation.

To summarise: A linear factor of (ajw + b) in the denominator will result in two corner frequencies in
the phase response at w = 101 ’g’ and 1011 g’ . At these frequencies, the gradient of the graph will
change by —7 and + 7 radians/decade respectively. The signs of the gradient changes will be reversed

for numerator factors and reversed again if 2 is negative (which is rare and can only happen in the
numerator).
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Plot Phase Response +

Responses ) — 60(jw) +720(jw) __ 20jw(jwt12)

Ifre:uency Response H(]w) - 3(]w)3+165(]w)2+762(]w)+600 o (jCU—|—1)(jw—|—4)(jw+50)

Sine Wave Response

t°saritfh:ic e Step 1: Factorize the polynomials 0.5

st:.;gh_t Line Step 2: List corner fregs: £ = num/den 3

R we = {17, 47, 12,507} <

Response .

II;::vps::cHigh Sfcep 3: Gradient changes at 10$1wc.b B T
Asymptotes Sign depends on num/den and sgn (2): o (rads)

Phase Approximation 1~ 10%;.47,40%;1.2%,1207;57, 500"

> pes Phase Step 4: Put in ascending order and calculate gaps as log;, 5—? decades:
SR Circut 17 (.6) .47 (.48)1.27 (.62) 5 (.3) 10" (.6) 407" (.48) 120~ (.62) 500 .
ummary

Step 5: Find phase of LF asymptote: Z1.2jw = +3.
Step 6: At w = 0.1 gradient becomes —7 rad/decade. ¢ is still 7.
Step 7: At w =04, ¢ = 5 —0.67 = 0.357. New gradient is —7.

Step 8: At w =1.2, ¢ = 0.35m — 0.485 = 0.11m. New gradient is —7.

Steps 9-13: Repeat for each gradient change. Final gradient is always O.

At 0.1 and 10 times each corner frequency, the graph is continuous but its
gradient changes abruptly by =% rad/decade.
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[Plot Phase Response ++]

Like the magnitude response, the phase response can be approximated by a graph that consists of a
sequence of straight line segments that are joined at “corners’. For this to be true, we need to plot
the phase response using a linear axis for the phase but a logarithmic axis for the frequency. As we
saw on the previous slide, each linear factor in either the numerator or the denominator gives rise to
two corners in the phase response graph. At each of these corners, the gradient of the graph changes
abruptly by &7 radians/decade; it follows that the gradient will always be an integer multiple of 7
radians/decade.

In order to plot the phase response graph, we need to determine three things: (a) the frequencies of all
the corners, (b) the sign of the gradient change at each one and (c) the phase at low frequencies (i.e. fre-

_ . : SN 20jw(jw+12)
quencies less than the first corner). The example response on the slide, H(jw) = GoTD ot wT50)
has four linear factors: one in the numerator and three in the denominator. This means we will have a

total of eight corners (two from each linear factor). Since all the factors have g > 0 the signs of the

gradient changes will be + followed by —for the numerator factor and — followed by + for the denom-

inator factors. The two corner frequencies corresponding to a factor (ajw + b) are at w = 0.1 ’%’ and

10 ) g) So, using a superscript for the sign of the gradient change, we get corners at 1.27 and 120~ for

the numerator factor and at 0.1, 0.4, 10T, 407, 5~ and 500" from the three denominator factors.
Sorting these into ascending order of w gives corners at 0.1, 0.4—, 1.2+, 5=, 10", 40", 120~ and
500T.
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[Plot Phase Response ++]

To plot the phase response, we calculate the low frequency asymptote by taking the terms with the
lowest power of jw in numerator and denominator; this gives 1.2jw which has a phase of +7 = 1.57

radians. So we begin with a horizontal line at 1.57 radians until the first corner frequency at w = 0.1~

where the gradient becomes —7. The graph will continue with this gradient until the next corner

frequency which is at w = 0.4 where the gradient will decrease by another 7 to become — 3.
To work out the phase at the second corner frequency (w = 0.4) we calculate how much the phase has
changed between w = 0.1 and 0.4 by multiplying the gradient of the graph (—7 radians/decade) by

the separation of these two corner frequencies in decades (log, 8:—‘11 = 0.602 decades). This product
gives gives a phase change of —0.473 radians. So the phase is 1.571 radians at w = 0.1 and decreases
by —0.473 to become 1.098 radians at w = 0.4.

The next corner is at w = 1.27 which is log; (1)%421 = 0.477 decades away from w = 0.4. Since the
gradient in this segment is — 5 = —1.571 rads/decade, the phase change between these two frequencies
is —1.571 x 0.477 = —0.749 radians. So the phase at w = 1.2 is 1.098 — 0.749 = 0.349 radians.

You continue like this hopping from each corner frequency to the next. At each corner frequency, you
know the new gradient (measured in radians/decade) and so you multiply this by the distance to the next
corner frequency (measured in decades) to get the phase change between the two corner frequencies.
As a check, the gradient after the final corner frequency should be zero and the phase should match
the phase of the high frequency asymptote. In this example, the high frequency asymptote is 20 (jw)_1
which has a phase of —7%. (Remember that j” has a phase of (%)r)
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RCR Circuit

11: F 1 .
requency R+ij B ijC+1 X 3R y

Responses

<[~

Frequency Response
Sine Wave Response

~ 3R+Rt s 4wRC+1 ;R@

Logarithmic axes

Corner fregs: %2>, R1(7+ LF Asymptote: H(jw) =1 c

Straight Line —
Approximations

Plot Magnitude

Response 0
Low and High
Frequency
Asymptotes

Logs of Powers +

4jwRC"

|Gain| (dB)

Phase Approximation

+

, ; , : 06 1 14decades i 06 !
Plot Phase Response 0.1 1 10 0.1 1 10
+ w RC w RC

> RCR Circuit

Summary

Magnitude Response:

Gradient Changes: —20dB/dec at w = %2 and +20 at w = 7

Line equations: H(jw) =(a) 1, (b) 70ms, () £55& = 0.25

Phase Response:
LF asymptote: ¢ = £1 =0
Gradient changes of £% /decade at: w = 292, %‘éJr, }22'(57+, ol

Atw= %L, ¢ =0— Tlogygrsr = — 5 % 0.602 = —0.157
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Summary

11: Frequency
Responses

Frequency Response
Sine Wave Response
Logarithmic axes
Logs of Powers +

Straight Line
Approximations

Plot Magnitude
Response

Low and High
Frequency
Asymptotes

Phase Approximation
+

Plot Phase Response

+
RCR Circuit

> Summary

. . Y .
Frequency response: magnltude and phase of - as a function of w
o Only applies to sine waves

o Use log axes for frequency and gain but linear for phase

> Decibels = 201log;, % — 10logy, %

Linear factor (ajw + b) gives corner frequency at w = !g]

o Magnitude plot gradient changes by +20dB/decade @w = ]g!
o Phase gradient changes in two places by:

> +7%rad/decade@w = 0.1 x !g]

> F75rad/decade@w = 10 x |g]

LF/HF asymptotes: keep only the terms with the lowest/highest power
of jw in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.
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[> 12: Resonance

Quadratic Factors
Damping Factor and
Q

Parallel RLC
Behaviour at
Resonance

Away from resonance
Bandwidth and Q
Power and Energy at
Resonance +
Low Pass Filter

Resonance Peak for
LP filter

Summary

12:

Resonance
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Quadratic Factors

_I_

12: Resonance

Quadratic Factors
> +
Damping Factor and
Q
Parallel RLC
Behaviour at
Resonance
Away from resonance
Bandwidth and Q
Power and Energy at
Resonance +
Low Pass Filter
Resonance Peak for
LP filter

Summary

A quadratic factor in a transfer function is: F(jw) = a (jw)> + b (jw) + c.

Case 1: If b2 > 4ac then we can factorize it:

F(jw) = a(jw — p1)(jw — p2)
—b+vb2—4ac
2a .

where p; =

|Gain| (dB)
N
o

A
o

0.3IRC
w

0.1/RC

1/RC

3/RC

X (jw)

1
By
e <

 6R?2C?(jw)?+7RCjw+1

1

— (6jwRC+1)(jwRC+1)

We =—

0.17 1
RC® RC

= pal; |p2]

Case 2: If b2 < 4ac, we cannot factorize with real coefficients so we leave it
as a quadratic. Sometimes called a quadratic resonance.

Any polynomial with real coefficients can be factored into linear and
quadratic factors = a quadratic factor is as complicated as it gets.
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[Derivation of Transfer Function]

KCL at V gives 2R

3R
S B S
VX 4 jwCV + Y=Y =0 = 3(V - X) +6jwRCV +2(V-Y)=0 e e

= (5+6jwRC)V = 3X +2Y.

KCL at Y gives

Yt +jwCY =0 = (1+3jwRC)Y =V.

Eliminating V' beween these two equations gives

(5+ 6jwRC) (1 + 3jwRC)Y = 3X +2Y

(5 + 21jwRC + 18 (jwRC)? — ) Y =3X

_ 3 _ 1 _ 1
= X " 3421jwRCH+18(jwRC)? = 14+7jwRC+6(jwRC)?2 =~ (14+6jwRC)(14+jwRC) "

At high frequencies, the impedance of the capacitor is much less than 3R so we can think of the circuit
as two potential dividers one after the other (i.e. the current through the 3R is negligible compared
to the current throught the first C'). The high frequency asymptote is therefore the product of the
asymptotes for the two potential dividers which gives % R 5 wRC’ X 33w1RC =

6(ijC’)2
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Damping Factor and Q

12: Resonance

Quadratic Factors <+

Damping Factor
> and Q
Parallel RLC

Behaviour at
Resonance

Away from resonance
Bandwidth and Q
Power and Energy at
Resonance +
Low Pass Filter
Resonance Peak for
LP filter

Summary

Suppose b2 < dac in F(jw) = a (jw)” + b (jw) + c.

Low/High freq asymptotes: Frr(jw) =¢, Fur(jw) =a (jcu)2

The asymptote magnitudes cross at the corner frequency:

‘a(jwc)Q‘ = |c| = we. = (/<.

a

_ bwe _ bsgn(a)

We define the damping factor, “zeta”, to be ( = 52— = %= = N

= F(jw) = ¢ ((jw%)Q r(iz) ¢ 1)

Properties to notice in this expression:
(a) cis just an overall scale factor.
(b) we just scales the frequency axis since F'(jw) is a function of .
(c) The shape of the F(jw) graphs is determined entirely by ¢.
(d) The quadratic cannot be factorized < b* < 4ac < [(] < 1.
(e) At w = w,, asymptote gain = ¢ but F(jw) = ¢ x 2j5(.

Alternatively, we sometimes use the quality factor, () ~ % — a—%’C.
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Parallel RLC

12: Resonance

Quadratic Factors <+

Damping Factor and
Q
D> Parallel RLC

Behaviour at
Resonance

Away from resonance
Bandwidth and Q

Power and Energy at
Resonance +
Low Pass Filter

Resonance Peak for
LP filter

Summary

Y
I

1

JjwlL

b

2awe

%—Fﬁ—kij’ — LC(jw)Q—I—%jw—l—l

we = /€ =1000, ¢ =

= 0.083

o 1
Asymptotes: jwl and el

IY/I| (dB)

Power absorbed by resistor oc Y2. It peaks quite
sharply at w = 1000. The resonant frequency, w,.,

60

20

100

1k 10k
w (rad/s)

is when the impedance is purely real:
at w, = 1000, Zrrc = &+ = R.

A system with a strong peak in power absorption

IS @ resonant system.

arg(Y//m

- ~ Y

=1

é@ R o e

600 S100m |10u

0.5

0 s
0.5k ) ]

100 1k 10k

w (rad/s)
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Behaviour at Resonance

12: Resonance

Quadratic Factors <+

Damping Factor and

Q

Parallel RLC
Behaviour at

> Resonance

Away from resonance

Bandwidth and Q

Power and Energy at

Resonance +

Low Pass Filter

Resonance Peak for

LP filter

Summary

601 y
8 Izb R 2L C
240- /$ 1t
- 600 S100m |10u

100 m 1(l)k _r - -

w (rad/s) —
w = 1000 = Z; = 100§, Zc = —100.
ZL — _ZC — IL — _IC s
= I=Igr+ I +1c=1Ip =1
=Y =IrR =600Z£0° = 56dBV %
_ Y _ 600 __ .
:}]L_Z_W——G] S

107 1000

P
Cp
<
Q

-10 : . -1000
0

t (ms)

5 10
t (ms)

Large currents in L and C' exactly cancel out = I = I and Z = R (real)
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Away from resonance
12: Resonance
Quadratic Factors %0 Y
Damping Factor and o =1
Q S0} /$ R L | C
Parallel RLC E R
Behaviour at 600 100m 10“
Resonance 20 . ,
Away from 100 1k 10k ] i
w (rad/s) —

resonance
Bandwidth and Q

Power and Energy at
Resonance +
Low Pass Filter
Resonance Peak for
LP filter

Summary

w = 2000 = Z;, = 200§, Z¢ = —50;
—1
_ 1 1 1 _ o
Z=(h+74+7) =0667-84
Y =1 x Z =66/ — 84° = 36 ABV
In=Y =011/ 84°

Y
R
2 =0.334—174°, Ic = 1.33/ +6°

Zr
2.

0

-2

lc

/N

i(t) (A)

I
0 2 4 6
t (ms)

100

-100

0.5
I
L
Of =2
I o
R
0.5
-05 0 05 1
1 (A)

0

Most current now flows through C, only 0.11 through R.
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Bandwidth and Q

12: Resonance

Quadratic Factors <+

Damping Factor and
Q

Parallel RLC
Behaviour at
Resonance

Away from resonance

> Bandwidth and Q

Power and Energy at
Resonance +

Low Pass Filter
Resonance Peak for
LP filter

Summary

Y __ 1
I — Yrt+j(wC—1/wL) . . Y

>y
|
@)

Bandwidth is the range of frequencies for

N
S
O
ok
-
-
3

|
—] |
O
-

which]%!2 is greater than half its peak.
Also called half-power bandwidth or 3dB —

bandwidth.
60T
|X |2 _ 1 3dB
7 (/7)1 (@O 1)’ 8 5o
. 2 -
Peak is | 7 (wo)|” = R? @ wo = 1000 ! -
, , 500 1K 2k
| v v w (rad/s)
At w3qB: ‘T(WSdB)‘ =3 ‘T(WOM
2
1 _ R? . R _
(1/R)?*+(w3apC—YwaqpL)® 2 =1+ (MSdBRC wgdBL) =7

w3dpRC — Rlwgapl = +1 =  wi;gRLC +w3qgL— R =0

Positive roots: waqp = TLEVLHARTLE — 1990 1086} rad/s

Bandwidth: B = 1086 — 920 = 167 rad/s.
% = 6. (Q = "Quality”)

~ W
() factor ~ =4
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Power and Energy at Resonance

12: Resonance

Quadratic Factors <+

Damping Factor and
Q
Parallel RLC
Behaviour at
Resonance
Away from resonance
Bandwidth and Q
Power and Energy
at Resonance +
Low Pass Filter
Resonance Peak for
LP filter

Summary

Absorbed Power =uv(t)i(t):
Pr, and Pg opposite and > Pg.
Stored Energy = %Lz% + %C’y2:
sloshes between L and C.
Q= w x Wetored + Pr
= wx XC|IR|® + L |I|? R= wRC

107

Pwr Absorbed (kW)

1
N

o
[l 3
N
o

t (ms)

Y

=1 ! !
D [Joo JopTh

100m | 10p

Ow = 1000: Y = 600,
Ir =11 = —6j, Ic = +6J

1000
-1000 : :
0 5 10
t (ms)
2 -
Wi Ve
)
=
o 1
o
9
»
0 L
0 5 10

t (ms)

() = wx peak stored energy = average power loss.
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[Derivation of Power and Energy Waveforms]

The input current is a phasor I =1 (i.e. i(t) = coswt where w = 1000rad/s).

The complex impedances are Z; = jwL = 10052 and Z¢o = jw% = —10075 2. Using the formula for
parallel impedances, the total impedance satisfies % = 630 + 1010j + _1](')0j = 6(1)0.

frequency, the impedances of L and C cancel out and the total impedance is just Z = 600 (2.

So, at the resonant

The voltage phasor across the three passive componentsis V =17 =1 x 600 = 600 V. The waveform
corresponding to this phasor is v(t) = 600 coswt and is plotted in the upper right graph. From knowing

V', we can use Ohm’'s law to work out the individual current phasors in the three components as
_ V. _ 600 __ _ V. _ 600  _ o _ V. _ 600 _ _a-
Ir = 5 =506 =1 lc = 7o = Ti00] — 67 and I, = Zr = 100 — 67. The waveforms

corresponding to these three phasors are plotted in the upper left graph.

Multiplying phasors together doesn’t directly give the correct result and so we calculate the power
waveforms directly by multiplying v(¢) x i(¢). For the resistor, V' = 600 and I = 1, so pgr(t) =
600 cos wt X coswt = 600 cos? wt = 300 + 300 cos 2wt. For the inductor, V = 600 and I} = —67, so
pr(t) = 600 coswt X 6sinwt = 3600 sin wt coswt = 1800 sin 2wt. Finally, for the capacitor, V' = 600
and I, = 467, so pr(t) = 600 coswt X —6sinwt = —3600 sin wt coswt = —1800sin 2wt. These are
plotted in the lower left graph.

The energy stored in an inductor is wp(t) = %Lz’Q(t) = % x 0.1 x 36sin?wt = 1.8sin?wt =
0.9 (1 — cos2wt). The energy stored in a capacitor is wo(t) = %C’U2(t) = % X 1072 x 6002 cos? wt =

1.8 cos? wt = 0.9 (1 + cos 2wt). These are plotted in the lower right graph. The total stored energy in
the circuit is wr, (t) + we (t) = 1.8 J which does not vary with time.

E1.1 Analysis of Circuits (2017-10213) Resonance: 12 — note 1 of slide 8



Low Pass Filter

12: Resonance

Quadratic Factors <+

Damping Factor and
Q

Parallel RLC
Behaviour at
Resonance

Away from resonance
Bandwidth and Q
Power and Energy at
Resonance +

> Low Pass Filter
Resonance Peak for
LP filter

Summary

= w0 1 L R
R+ij—|—jw% LC(jw)?*+RCjw+1

<<

Asymptotes: 1 and w5 (]w) z &

we = /< = 1000, c MC:% e

@chL:_ZC’Zl()O],I:%, ’%‘ ﬁ:L Z%Z—%

Magntitude Plot:
Small { = less loss, higher peak, smaller bandwidth.
Large ¢ more loss, smaller peak at a lower

Phase Plot:
Small ( = fast phase change: 7 over 2( decades.

AY 1 + = loglo for 10~ < < 10
R=20 —c 7— 0 I
2 s RSN
0 — R=60. (=0 £ R=20, {=0.1
m - y Z—OS N — —
T 0 R=120, (=0.6 x R=60, {=0.3
2 \Y A < E -0.5 R=120, {=0.6
L (o))
4 > -20 5
-40 . -1 \ . : A
2 0 2 4 100 1k 10k 100 251 1k 3.98k 10k
V w (rad/s) w (rad/s)

w, larger bandwidth.
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Resonance Peak for LP filter

12: Resonance

Quadratic Factors <+

Damping Factor and
Q
Parallel RLC
Behaviour at
Resonance
Away from resonance
Bandwidth and Q
Power and Energy at
Resonance +
Low Pass Filter
Resonance Peak
> for LP filter

Summary

Y __ 1 — 1 L R Y
X . 2 . - . ow \2 . w
LCGw)"+ ROjw+1 (422) +2¢i e +1 X1 [ 100m e
— c _ bwc _ i T __IOM
we = /5 = 1000, ¢ = 2awc = 2c 200 R
Y _
+ is a function of = so w, just scales frequency axis (= shift on log axis).

The damping factor ¢, ("zeta") determines the shape of the peak.

Peak frequency: 30 090, 2545
— , 14dB
Wp = wey/1 — 2(? 3 % 906, 5dB
¢ > 0.5 = passes under corner, < 10 2.4
¢ > 0.71 = no peak, = 0
¢ > 1 = can factorize 105708 09 1 12 14
w (krad/s)
- - . . 1 C 1
Gain relative to asymptote: O w,y: i O w,: 5¢ Q

Three frequencies: w,= peak, w.= asymptotes cross, w,= real impedance
For ( < 0.3, wp, = w. =~ w,. All get called the resonant frequency.

The exact relationship between w,,, w. and w, and the gain at these
frequencies is affected by any other corner frequencies in the response.

E1.1 Analysis of Circuits (2017-10213)

Resonance: 12 — 10 / 11



Summary

12: Resonance

Quadratic Factors <+

Damping Factor and
Q

Parallel RLC
Behaviour at
Resonance

Away from resonance
Bandwidth and Q

Power and Energy at
Resonance +

Low Pass Filter

Resonance Peak for
LP filter

> Summary

e Resonance is a peak in energy absorption

O

O

©)

Parallel or series circuit has a real impedance at w,
> peak response may be at a slightly different frequency
The quality factor, (), of the resonance is

& woxstored energy __ wo 1
~ powerin k" 3 dBbandwidth ~ ¢

3 dB bandwidth is where power falls by % or voltage by %

The stored energy sloshes between L and C

N2 |
e Quadratic factor: (Z}—“) + 2¢ (*Zd—w> +1

O

a(jw) +b(jw)+¢ = w.= V< and (= ﬁ = ngTn;Z)
+40 dB/decade slope change in magnitude response
phase changes rapidly by 180° over w = 10T w,

Gain error in asymptote is % ~ @ at wy

For further details see Hayt Ch 16 or Irwin Ch 12.
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D> 13: Filters

Filters
1st Order Low-Pass
Filter
Low-Pass with Gain
Floor

Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter
Twin-T Notch Filter

Conformal Filter
Transformations (A)

Conformal Filter
Transformations (B)

Summary

13: Filters
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Filters

13: Filters

> Filters

1st Order Low-Pass
Filter

Low-Pass with Gain
Floor

Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter

Twin-T Notch Filter
Conformal Filter
Transformations (A)

Conformal Filter
Transformations (B)

Summary

A filter is a circuit whose gain varies with frequency. Often a filter aims to
allow some frequencies to pass while blocking others.

0 Radio/TV: a “tuning” filter blocks all frequencies
except the wanted channel

O Loudspeaker: “crossover’ filters send the right
frequencies to different drive units

O  Sampling: an “anti-aliasing filter” eliminates all
frequencies above half the sampling rate

— Phones: Sample rate = 8 kHz : filter
eliminates frequencies above 3.4 kHz. [Wikipedia]

O Computer cables: filter eliminates interference
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1st Order Low-Pass Filter

13: Filters

Filters
1st Order
Low-Pass Filter
Low-Pass with Gain
Floor

Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter
Twin-T Notch Filter

Conformal Filter
Transformations (A)

Conformal Filter
Transformations (B)

Summary

X —_— 1/ij —_— 1 = — 1 R
X R+1/juc = jwRCH1 241 X Y
—_— —._
.o — o] = L _
Corner frequency: p = |a] e P
: D
Asymptotes: 1 and y 0
Very low w: Capacitor = open circuit e
Very high w: Capacitor short circuit =20
-30 O.Ilp p 16p
 (rad/s)

A low-pass filter because it allows low frequencies to pass but attenuates

(makes smaller) high frequencies.

The order of a filter: highest power of jw in the denominator.
Almost always equals the total number of L and/or C'.
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Low-Pass with Gain Floor

13: Filters

Filters
1st Order Low-Pass
Filter

Low-Pass with
> Gain Floor

Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter
Twin-T Notch Filter

Conformal Filter
Transformations (A)

Conformal Filter
Transformations (B)

Summary

X - R—|—1/ij _
X 4R+1/jwc

jwRCH1 _ 241

 JwdRCH1 — iw g

1 1

Corner frequencies: p = 17=, ¢ = 55

Asymptotes: 1 and i

Very low w:

Capacitor = open circuit
Resistor R unattached. Gain =1

Very high w:

Capacitor short circuit

|Gain| (dB)

x 3R Y
R
C__
O.iq p q 16q
w

Circuit is potential divider with gain 201og;, + = —12dB.
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Opamp filter

13: Filters

Filters
1st Order Low-Pass
Filter
Low-Pass with Gain
Floor

D> Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter

Twin-T Notch Filter
Conformal Filter
Transformations (A)

Conformal Filter
Transformations (B)

Summary

Inverting amplifier so

Y _  3R||[(R+Yiwc) _  3R(R+Yjwc)
X R ~ T Rx(BRtR+/jwo)

. R+1/jwc JwRCH+1

3 X IRT00 = 9 X j0dRCOTT

Same transfer function as before except x — 3 = +9.5dB.

Advantages of op-amp crcuit:
1. Can have gain > 1.

2. Low output impedance - loading
does not affect filter

3. Resistive input impedance - does
not vary with frequency

|Gain| (dB)

10¢

O.iq p q 16q
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Integrator

13: Filters v 1/ij 1
Filters X — — R = — W
1st Order Low-Pass

Filter ]

Low-Pass with Gain Ca paCItOFZ 1= Cd’vo
Floor - . C

Opamp filter 1 = =<+~ = —(, =<

> Integrator R dt

High Pass Filter dy -1

2nd order filter dt ﬁx

Sallen-Key Filter

Twin-T Notch Filter
Conformal Filter
Transformations (A)

Conformal F.i|ter y(t) —

Transformations (B)

t d =1
I Hdt = =5 O:cdt

RC 0 Lodt + y(0)

Summary

Note: if x(t) = coswt

[ cos(wt)dt = L sin(wt) = gain o<

We can limit the LF gain to 20 dB:

Y _ _10R||1/jw0 . 10Rx1/jwcC
X R — T R(O0R+jwc)
_ 10 _ 0.1
jwlORC+1 (Wc = RC)

|Gain| (dB)

_[*
20
0
-20 . . -
0.1 1 10
wRC
10R
R | |C !
A = Y
[P
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High Pass Filter

13: Filters

Filters
1st Order Low-Pass
Filter
Low-Pass with Gain
Floor

Opamp filter
Integrator

> High Pass Filter
2nd order filter
Sallen-Key Filter
Twin-T Notch Filter

Conformal Filter
Transformations (A)

Conformal Filter
Transformations (B)

Summary

Y _ R __ jwRC

X = R+1jwc T jwRC+1

Corner Freq: p = 5=

Asymptotes: jwRC and 1
Very low w: C open circuit: gain =0

Very high w: C short circuit: gain =1

We can add an op-amp to give a
low-impedance output. Or add gain:

Z _ Rp JwRC
X = (1 T RA> X JwRCHI

|Gain| (dB)

s 2
R Ry

— H
Ry

—1—

O.ip p lé)p
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2nd order filter

13: Filters Y __ Ro+jwlL C R

Filters X 1o+ R LR o L 1

1st Order Low-Pass /j ity X4| Y
E:\tlve-rPass with Gain — LC’(jw)2—|—R2 Cjw 10“ 110 10
Floor LC(]W)2+(R1+R2)CJW+1 R2
Opamp filter . .

Integrator — J wC (.7 wL+ Ry )

High Pass Filter LC(gw)2+(R1+R2)CJw+1 L=<0.1

> 2nd order filter
Sallen-Key Filter

Twin-T Notch Filter -
Conformal Filter
Transformations (A)

Conformal Filter Asymptotes: ]CURQC and 1

Transformations (B) _ 0
Summary Corner frequencies: %-20
+20dB/dec at p = % = 100rad/s S
—40dB/dec at oo m ok
¢=+/%= \/T_C = 1000rad/s §
Damping factor: ( = bng\/%Z) = 20 2 (R +Rp)C =0.6.

Gain error at q is % =@ =0.83 = —1.6 dB (40.04 dB due to p)

Compare with 1st order:
2nd order filter attenuates more rapidly than a 1st order filter.

E1.1 Analysis of Circuits (2017-10116) Filters: 13 -8 / 13



Sallen-Key Filter

= 0 R=10k
1st Order Low-Pass @ )4
E“te.rp ith Gai s C C Z /
(I=)I°:|:1 filter 9-40 X4| I ! [Z] >_0_
|n:egr:tor 100 1K 10K 60n 60n
High Pass I.=i|ter ® ' 2 mR=28k
e Asymptotes: (£)" and 1 m2s L
Twin-T Notc-h Filter v_x v_ 7 v_ 7
o ay  KCLQ@Y: 22 + 4o + 5> =0 [assume Vy = V0 = 7]
S T ® =Y (1 +2jwRC) — Z (1 + jwRC) = X jwRC
Summary _ . .
KCL @ Vy: 5 + —c = 0= Z(1+ jumRC) = Y jumRC
1+jwmRC . . )
Sub V: zUHemEL) (1 4 2jwRC) — Z (1 + jwRC) = X jwRC
— Z _ m(jwRC)? _ (e /p)?
X m(jwRC)?*+2jwRC+1 (G /p)242¢(dw/p)+1

Corner freq: p = ﬁ =996 rad/s, ¢ = % = pRC = \/% = 0.6

Sallen-Key: 2nd order filter without inductors. Can easily have gain >1.

o _ 2. : >N
Designing: Choose m = (~<; C any convenient value; R = Tok
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Twin-T Notch Filter

13: Filters

Filters

1st Order Low-Pass
Filter

Low-Pass with Gain
Floor

Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter

Twin-T Notch
D> Filter
Conformal Filter
Transformations (A)
Conformal Filter
Transformations (B)

Summary

After much algebra:

7 (14m)((2jwRC)*+1)

X ~ (2jwRC)2+4(1—m)jwRC+1

_ (14m)((Fw/p)?+1)
 (99/p)?+2¢(3w/p)+1

p=5iz=314,(=1-m=0.1

Very low w: C open circuit

_ _ 7 m+1=56dB_: 20p;

Non-inverting amp, £ =1+ m Z o
. . . '% -20¢
Very high w: C' short circuit S
Non-inverting amp, % =1+m 9200 300 500
w (rad/s)
N2

At w = p, (%) = —1: numerator = zero resulting in infinite attenuation.

The 3 dB notch width is approximately 2{p = 2(1 — m)p.

Used to remove one specific frequency (e.g. mains hum @ 50 Hz)

Do not try to memorize this circuit
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Conformal Filter Transformations (A)

13: Filters

Filters
1st Order Low-Pass
Filter
Low-Pass with Gain
Floor

Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter
Twin-T Notch Filter

Conformal Filter
Transformations

> (a)
Conformal Filter
Transformations (B)

Summary

A dimensionless gain, V—j{ can always be written using dimensionless

ot
: - . Zp _ Z, _ jwL Zp, _ . 2
impedance ratio terms: ﬁ = jwRC, Z; = JR : Zé = —w*LC.
Impedance scaling: _ °
3 -10
Scale all impedances by k: £ .20
R/ — kR, Cl — k_lc, L/ — kL 9_30
Impedance ratios are unchanged 10 100 ) ik 10k
so graph stays the same. " e ok
(k is arbitrary) S R R N e 4
L - o L
4T 2000
Frequency Shift: - -
AHeney k =20
Scale reactive components by k: v 20k g v 20k g
R =R, C'"=kC, L' =kL o e v e
= 7'(k'w) = Z(w) 2000] ]
Graph shifts left by a factor of k. = o =

Must scale all reactive components in the circuit by the same factor.
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Conformal Filter Transformations (B)

13: Filters

Filters
1st Order Low-Pass
Filter
Low-Pass with Gain
Floor

Opamp filter
Integrator

High Pass Filter
2nd order filter
Sallen-Key Filter
Twin-T Notch Filter

Conformal Filter
Transformations (A)

Conformal Filter
Transformations

> ()

Summary

Change LR circuit to RC: R
Change R = kL, C' = = <
= ZR’ = jwR'C’ = J%L — gg = |
1k
Impedance ratios are unchanged
at all w so graph stays the same. Xrd Y
(k is arbitrary) dwwﬂ
1k
Reflect frequency axis around w;,,: k=
1 X
Change R = 5, C' = 4 ¢
A, w?n 7 * ln__
-7 () = (W) =

(a) Magnitude graph flips

(b) Phase graph flips and negates since Z2* = —Zz.

(k is arbitrary)

100K ™
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Summary

13: Filers e The order of a filter is the highest power of jw in the transfer function
Lst Order Low-Pass denominator.

liter

ow-Pass with Gain . . . .

Floor | = e e Active filters use op-amps and usually avoid the need for inductors.
I‘:f:::ti'“ o Sallen-Key design for high-pass and low-pass.

High Pass Fiter o Twin-T design for notch filter: gain = 0 at notch.

2nd order hiter

sallen-Key Fileer e For filters using R and C only:

o ey () o Scale R and C: Substituting R' = kR and C’ = pC scales
S frequency by (pk) ™",

P Sy o Interchange R and C: Substituting R’ = wfc and C" = ﬁ

flips the frequency response around wq (Vk).
Changes a low-pass filter to high pass and vice-versa.

For further details see Hayt Ch 16 or Irwin Ch 12.
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14: Power in AC
> Circuits

Average Power
Cosine Wave RMS
Power Factor +
Complex Power
Power in R, L, C
Tellegen’s Theorem

Power Factor
Correction

Ideal Transformer
Transformer
Applications

Summary

14: Power in AC Circuits

E1.1 Analysis of Circuits (2017-10213)
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Average Power

14: Power in AC
Circuits

> Average Power
Cosine Wave RMS
Power Factor
Complex Power
Power in R, L, C
Tellegen’s Theorem

Power Factor
Correction

Ideal Transformer

Transformer
Applications

Summary

+

Volts
o
q
Volts?
o
[6)]

Vo V\/ |
v(t) <v?>
v(t) R -1 C M L M M M 0
50 100 150 200 250 50 100 150 200 250
t(s) t(s)

Intantaneous Power dissipated in R: p(t) = L}%t)

Average Power dissipated in R:

T T v’ (t)
P =4 Ji it = x I v?(t)at = L501

(v2(t)) is the value of v?(t) averaged over time

A

We define the RMS Voltage (Root Mean Square): V,.,,,s = \/(v?(%))

. : : . <v2(t)>  (Vims)?
The average power dissipated in R is P = 7~ = 5=

V,ms 1S the DC voltage that would cause R to dissipate the same power.

We use small letters for time-varying voltages and capital letters for
time-invariant values.
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Cosine Wave RMS

14: Power in AC
Circuits

Average Power

> Cosine Wave RMS

Power Factor
Complex Power
Power in R, L, C
Tellegen’s Theorem
Power Factor
Correction

Ideal Transformer
Transformer
Applications

Summary

+

N7 =N NN
AVARVARE -\ raTa AN

Cosine Wave: v(t) = 5coswt. Amplitude is V' =5V.

rms

v(it) & V

-5

0

Squared Voltage: v*(t) = VZcos?wt = V2 (5 + 3 cos 2wt)

2
Mean Square Voltage: <v2> = VT since cos 2wt averages to zero.

RMS Voltage: Vyps = +/(v?) = %V —354V=V
Note: Power engineers always use RMS voltages and currents exclusively

and omit the “rms” subscript.
For example UK Mains voltage = 230 V rms = 325 V peak.

In this lecture course only, a = overbar means ~+/2: thus V= %V.
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Power Factor -+

14: Power in AC

Circuits 2 v 2| v(% % 15} /\
Average Power = i) -t
Cosine Wave RMS §’ %0 N 205. \
> Power Factor + B p s V V & .0 / \ / \ / \ /
\/ Y Y Y ,
20

Complex Power 0 ok

Power in R, L, C 0 1 2 0 10 20 30 40 0 10 30 40

Tellegen’s Theorem Real t(ms) t(ms)

Power F

o et Suppose voltage and current phasors are: i)

Ideal Transformer —_ ]0\/ S

Transformer V T ‘V‘ € A U(t) T |V| COS ((Ut —|— QV) V(f) 7
Applications 0 .

Summary I — |I| 6‘7 I ~ Z(t) — |I| COS ((Ut —|_ 9[)

Power dissipated in load 7 is
p(t) =v(t)i(t) = |V||I|cos (wt + Oy ) cos (wt + Of)
= |V||I] (5 cos (2wt + Oy + 6;) + 5 cos (By — 01))
= 5 [V| || cos (Bv — 01) + 5 [V||I] cos (2wt + Oy + 6;)
Average power: P = 1 |V||I|cos(¢) where ¢ =6y —0;
= “7‘ m cos (¢) cos ¢ is the power factor

¢ > 0 < a lagging power factor (normal case: Current lags Voltage)
¢ < 0 < a leading power factor (rare case: Current leads Voltage)
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[Multiplying Phasors]

From the previous slide, if the phasor voltage and current are V = |V |e/®Vand I = |I|e??1, then the
corresponding waveforms are v(t) = |V|cos (wt + 0y ) and i(t) = |I| cos (wt + 7). When you multiply
these two wavefoms together you get p(t) = %|V| |I] cos (6 —61) + %|V| || cos (2wt + Oy + O7).
This product contains two components: a constant, or DC, term that doesn’t involve t and a second
term that is a cosine wave of frequency 2w.

The time-average of the second term is zero (because a cosine wave of any non-zero frequency goes
symmetrically positive and negative and so averages to zero) and so the average power is just equal
to the first term: %|V| 1| cos (B — 07). It is easy to see that V x I* =|V]elV x |I|e 791 =
(V| |I]edOv—=01) = |V||I| cos(6y — 1) + j|V]||I| sin (8y — @) and so the average power is the real
part of %V x I*.

The second term is a cosine wave at a frequency of 2wand so it is possible to represent this waveform,
%|V| || cos (2wt + 0y + 01), as a phasor whose value is %V x I = %|V| 1] ed(Ov+01),

So to sum up, if you multiply together the two sinusoidal waveforms corresponding to phasors V' and I,
you get two components: (a) a DC component of value R (%V x I*) and (b) a sinusoidal component

of twice the frequency which corresponds to the phasor %V X I.
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Complex

Power

14: Power in AC
Circuits

Average Power
Cosine Wave RMS
Power Factor +
> Complex Power
Power in R, L, C
Tellegen’s Theorem

Power Factor
Correction

Ideal Transformer
Transformer
Applications

Summary

If V=2V

el and

2]

ejeI

The complex power absorbed by Z is S £V x I*

where * means complex conjugate.

~

_ \v( \f

= P +jQ

Complex Power:

Apparent Power: |S| £

Average Power:
Reactive Power:

Power Factor: cos¢ = cos (L‘N/ — LT) — |£

VX I = (V( IOV (I( e—i01 — (V(

el? = “7‘ m cos ¢ + J

T‘ ej(ev_gf)

17‘ (’f

sin ¢

i(7)

S

¢ P

S £ VI* = P+ jQ measured in Volt-Amps (VA)

‘7‘ m measured in Volt-Amps (VA)
P = R (S) measured in Watts (W)

Q = 3 (S) Measured in Volt-Amps Reactive (VAR)

Machines and transformers have capacity limits and power losses that are
independent of cos ¢; their ratings are always given in apparent power.

Power Company:

E1.1 Analysis of Circuits (2017-10213)

osts o a

arent power, Revenue o average POWEr.
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Power in R, L, C

14: Power in AC
Circuits

Average Power
Cosine Wave RMS
Power Factor +
Complex Power

> Power in R,L,C
Tellegen’s Theorem

Power Factor
Correction

Ideal Transformer

Transformer
Applications

Summary

For any impedance, Z, complex power absorbed: S = VI* = P + jQ

: ~ ~ >~ ~2 ~2 |‘72
Using (a) V =12 (b) I x I :‘I‘ WegetS:‘]| z =L

2 =12
Resistor: S = ‘I‘ R = “;J o =0

Absorbs average power, no VARs (Q = 0)

Inductor: S =3 | ‘ wL = j— |V|

No average power, Absorbs VARs (Q > 0)

2
Capacitor: § = — Blj = j‘V‘ wC' ¢ = —90°

il
5= +90° B

No average power, Generates VARs (@ < 0)

VARs are generated by capacitors and absorbed by inductors
The phase, ¢, of the absorbed power, S, equals the phase of Z
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Tellegen's Theorem

14: Power in AC
Circuits

Average Power

Cosine Wave RMS

Power Factor
Complex Power
Power in R, L, C

Tellegen's
Theorem
Power Factor
Correction
Ideal Transformer
Transformer
Applications

Summary

Tellegen’s Theorem: The complex power, S, dissipated in any circuit’s

components sums to zero.

x, = voltage at node n
Vi, I, = voltage/current in branch b
(obeying passive sign convention)

(1 if V, starts from node n

apn = { +1 if V} ends at node n

0 else

\
e.g. branch 4 goes from 2 to 3 = a4, = [0, —1, 1]

Branch voltages: Vi, =) appz, (e.g. Vi = x5 — x2)
KCL © node n: Zb apndp =0 = Zb Apn, l;k =
Tellegen: >, VoIy = >, > apn@nl}

— Zn Zbabn ;len: ann Zbabn l;k: ann X

nodes (n)
ap,| 1 2 3
1l 100
=21 10
]
§3 01 0
s 40 0-1 1
“ 500 041
0

Note: >, Sy =0 = > ,P,=0 andalso >, Q,=0.
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Power Factor Correction

14: Power in AC
Circuits

Average Power
Cosine Wave RMS
Power Factor
Complex Power
Power in R, L, C
Tellegen’s Theorem

Power Factor
> Correction

Ideal Transformer

Transformer
Applications

Summary

+

V = 230. Motor modelled as 5||7; Q. "7

~ Y Y% B . B o + R L
I = Ej 77 =46 — j32.9A=56.5£ — 36 2;&(_) [E:% 7
S=VI*=10.6 4+ j7.6 kVA=13236° kVA 50Hz

cos ¢ = % = cos 36° = 0.81

Add parallel capacitor of 300 uF: e

Zo = g = —10.6§ Q= Ic = 21.75 A 16 DR §L e
T — : _ o 230~ 5 3T T
I =46 —j11.2A =474 —14° A ey

So = VI = —j5kVA

S =VI*=10.6+ j2.6 kVA = 10.9214° kVA S

cos ¢ = % = cos 14° = 0.97 )
/MQ

Average power to motor, P, is 10.6 kW in both cases.

~

‘I|, reduced from 56.5 \ 47 A (—16%) = lower losses.
Effect of C: VARs = 7.6 ™\, 2.6 kVAR , power factor = 0.81  0.97.
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Ideal Transformer

14: Power in AC
Circuits

Average Power
Cosine Wave RMS
Power Factor +
Complex Power
Power in R, L, C
Tellegen’s Theorem

Power Factor
Correction

> Ideal Transformer
Transformer
Applications

Summary

A transformer has > 2 windings on the same magnetic core.

N H . @ . ! R VT» _ @
Ampére's law: Y N, I, = ;ZTA' Faraday's law: = Cgl—t.
N7 : Ny 4+ N3 shows the turns ratio between the windings. N
The e indicates the voltage polarity of each winding. L
Since ® is the same for all windings, - J TVz
Ny No N3 VT 7
1 [] 3
ASSUI’TIG/L-)OO@ Ni11I1 + Noly + N3ls =0 gTV
3
These two equations allow you to solve circuits and also Ni:Ny+N;

imply that > .S; = 0.

Special Case:

For a 2-winding transformer this simplifies to i NEHN &
VQI%Vl and IL:—IQI%Il ’ 11 ’

2 2 oL a
Hence ‘I/—ll - (%_;) }/_z — (%—;) Z g "

Equivalent to a reflected impedance of (%) Z
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Transformer Applications

14: Power in AC
Circuits

Power Transmission

Average Power

Cosine Wave RMS Suppose a power transmission cable has 12 resistance.
S 100KVA@ 1KV = 100A = I2R = 10 KW losses.

Powerin R/ € 100 kKVA@ 100kV = 1A = I?R = 1 W losses.

Comction Voltage Conversion

Ideal Transformer

> Z;ap']?f;’:;‘;:; Electronic equipment requires < 20V but mains voltage is 240V ~.
Summary

Interference protection

Microphone on long cable is susceptible to interference from nearby
mains cables. An N : 1 transformer reduces the microphone voltage
by N but reduces interference by N2.

Isolation

There is no electrical connection between the windings of a transformer
so circuitry (or people) on one side will not be endangered by a failure
that results in high voltages on the other side.
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Summary

14: Power in AC
Circuits

Average Power
Cosine Wave RMS
Power Factor +
Complex Power
Power in R, L, C
Tellegen’s Theorem

Power Factor
Correction

Ideal Transformer
Transformer
Applications

> Summary

Complex Power: S = VI =P + 50 where ‘N/ = Vs = —=V.

©)

O

V2

For an impedance Z: S = ‘I| Z =
Apparent Power: |S| = ‘V‘ ‘I‘ used for machine ratings.
Average Power: P =R (S) = “7‘ m cos ¢ (in Watts)
Reactive Power: Q = 3 (S) = “N/| ‘f sin ¢ (in VARs)

Power engineers always use V and I and omit the ~

Tellegen: In any circuit ), Sp =0=> , Po=)_, Qs =0

Power Factor Correction: add parallel C' to generate extra VARs

Ideal Transformer: V; oc N; and > N;I; = 0 (implies > .S; = 0)

For further details see Hayt Ch 11 or Irwin Ch 9.
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> 15: Transients (A)

Differential Equation

Piecewise steady
state inputs

Step Input
Negative exponentials

Exponential Time
Delays

Inductor Transients
Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

15: Transients (A)

E1.1 Analysis of Circuits (2017-10110)
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Differential Equation

15: Transients (A) : .

Differential To find y(t): , x(t) R (?)
> Equation , x(t) constant: Nodal analysis
Piecewise stea . . .
e s x(t) sinusoidal: Phasors + nodal analysis i\ ==
S x(t) anything else: Differential equation
Exponential Time ____
Il:::llz::or Transients Z(t) — Cd_y — X~y = RCd_y _|_ =T
Linearity - dt R dt y B

Transient Amplitude

General Solution: Particular Integral + Complementary Function

Capacitor Voltage
Continuity

DU Particular Integral: Any solution to RC% +y==x
If x(t) is piecewise constant or sinusoidal, we will use
nodal/phasor analysis to find the steady state solution for y(t).

Complementary Function: Solution to RC% +y=20
Does not depend on x(t), only on the circuit.
Solution is y(t) = Ae™""
where 7 = RC is the time constant of the circuit.

The amplitude, A, is determined by the initial conditions at ¢ = 0.
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Piecewise

steady state inputs

15: Transients (A)

Differential Equation

Piecewise steady
state inputs

Step Input
Negative exponentials

Exponential Time
Delays

Inductor Transients
Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

We will consider input signals that are sinusoidal or constant for a particular
time interval and then suddenly change in amplitude, phase or frequency.

Output is the sum of the steady state and a transient:
y(t) = yss(t) + yre(t)

Steady state, yss(?), is the same frequency as the input;

use phasors + nodal analysis.

x0) B )

10k

[ 5w

Transient is always yr,(t) = Ae™* at each change.

0 /\/MNW\'VWW\’\

Vsld) /\_/L/\_,/\/\}V\N\NWW\
— V__¥

¥(0 W

V(D) L —
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Step Input

15: Transients (A)

Differential Equation

Piecewise steady
state inputs

> Step Input
Negative exponentials

Exponential Time
Delays

Inductor Transients
Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

Fort <0, y(t) =x(t) =1
FortzO,RC’CCll—f—l—y:x:éL x(n) K t U
Time Const: 7 = RC = 1ms 1 C
1

Steady State (Particular Integral) ___“
yss(t) = :C(t) =4 for t Z 0 4 B
Transient (Complementary Function) s
yrr(t) = Ae= /" _2
Steady State + Transient TS
y(t) = yss +yrr =4+ Ae™ /" ‘ o

2
To find A, use capacitor property: S0 ;
Capacitor voltage never changes abruptly 2 //

-1 0 1 2 3

y(0+) =4+ Aand y(0—)=1=>4+A=1= A= -3
So transient: yr,(t) = —3e~"/" and total y(t) =4 — 3e~"/"

Transient amplitude < capacitor voltage continuity: vo(04) = vo(0—)
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Negative exponentials

15: Transients (A)

Differential Equation

Piecewise steady

state inputs

Step Input
Negative
exponentials

Exponential Time
Delays

Inductor Transients
Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

Positive exponentials grow to +oo:
et 3e'/* —2e"/

Negative exponentials decay to O:
2e~t e 4 —2e7Y/?

Transients are negative exponentials.

Decay rate of ¢ /¢
37% after 1 time constant
5% after 3, <1% after 5

Gradient of ¢ /¢
Gradient at ¢ hits zero at t + a.
True for any t.

10 € 3’
0
-10 \.Zev:
0 1 2 3 4 5
t
2
2e’
e-l/at
0
2™
20 2 4 6 8
t
1
0 0.05 0.01
a 2a 3a 4a 5a
t
1
0.5
0 a 2a 3a
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Exponential Time Delays

15: Transients (A)

Differential Equation

Piecewise steady
state inputs

Step Input
Negative exponentials

Exponential Time
> Delays

Inductor Transients
Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

Negative exponential with a final

value of F. A
J— _(t_T ) T L;
yt)=F+(A—F)e )/ Tl T
TA TB
t
How long does it take to go from A to B 7
At t =Tg:
y(Tg)=B=F+ (A—F)e "5 ")/
B—F _ ~(Tp=Ta)/r
A—F

B - A—F\ _ initial distance tOF)
Hence T — T4 = 7ln (B—F) =7ln ( final distance tor

Useful formula - worth remembering.
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Inductor Transients
15: Transients (A) _ Ty
Differential Equation We knOW = x(l‘) R y(t)
Piecewise steady (t) _ L@ d(z—y) Ldr Ldy
state inputs y - dt dt R dt R dt

Step Input
Negative exponentials

Exponential Time
Delays

Inductor
Transients

Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

Solution: Particular Integral + Complementary Function

. : . L dy L dx
Particular In.teg.ral. Any solution to 7 dt —I—y 2oL
If x(t) is piecewise constant or sinusoidal, we will use

nodal/phasor analysis to find the steady state solution, yss(t).

Complementary Function: Solution to fzcclg +y=0

Does not depend on x(%), only on the circuit.
Solution is yr,(t) = Ae™"/"
where 7 = % ' he time constant of the circuit.

1st order transient is always yr,.(t) = Ae™"7" where 7 = RC or %

Amplitude A <= no abrupt change in capacitor voltage or inductor current.
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Linearity

15: Transients (A)

Differential Equation

Piecewise steady
state inputs

Step Input
Negative exponentials

Exponential Time
Delays

Inductor Transients
> Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

1st order circuit has only one C' or L. 6R
Make a Thévenin equivalent of the network &% ) 2Ry
connected to the terminals of C. Remember ol | =c

x is a voltage source but y is not.
Now v(t) = vss(t) + v (1)
= vgs(t) + Ae” /"
Time constant is 7 = Ry, C
where Ry, is the Thévenin resistance.

Replace the capacitor with a voltage source

- Lo x(0) | R —2R [
v(t); all voltages and currents in the circuit C ]
will remain unchanged. SR[lSva

Linearity: y = ax + bv = ax + bvgg + bvr, = yss + bvp,
All voltages and currents in a circuit have the same transient (but scaled).

The circuit’s time constant is T = Ry, C or RLM where Ry, is the
Thévenin resistance of the network connected to C or L.
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Transient

Amplitude

15: Transients (A)

Differential Equation

Piecewise steady
state inputs

Step Input
Negative exponentials

Exponential Time
Delays

Inductor Transients
Linearity

Transient
> Amplitude

Capacitor Voltage
Continuity

Summary

Find Steady State (DC = Z; = 0)

Potential divider: ygg = %:c

yss(0—) =1, yss(0+) =3
Inductor Current Continuity

iss(o—) — 1mA = iL(O+) — 1mA

At t = 0+
r—y=1mAx1lk=1
y(0+) =2(0+) —1=5

Time Constant

Setz=0— Ry, =2k

_ L
T—RTh—Q,us

Result

y=1yss + (y(0+) — yss (04)) e/
=34+ (5—3)e "
=342 "

6.
A4-
4
2
Of .
-5 0 5 10 15 20
t (us)
6.
y
:4' Yss
=
2.
&
O \ \ :
-5 0 5 10 15 20

t(us)
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Capacitor Voltage Continuity

15: Transients (A)

Differential Equation

Piecewise steady
state inputs

Step Input
Negative exponentials

Exponential Time
Delays

Inductor Transients
Linearity
Transient Amplitude

Capacitor Voltage
Continuity

Summary

Find Steady State (DC = ZC
KCL @ Vi 252 +
KCL @ V: &b 4 u—e 0

3 13
Uss = 2L, Yss = 1g&

| |
g

Capacitor Voltage Continuity
USS(O—) = -3 = U(O—l—) = -3

At t = 0+ :c—4andv— —3

KCL@Y: &3 pucd
J04) = == 3

Time Constant
7 = RppC = 2RC (from earlier slide)

Result

y = yss + (v (0+) — yss (0+)) e™ /"
_ iy (Ce 1y

_143 184/ 4 1 1 -t/
13 18 _—t/r __ 9l 41 _—t/2RC
= 3 L€ —34 426

6R
8R| | 17C
4
2
Zo
-2
_4 ) )
-RC 0 RC 2RC 3RC
t
4 Yss
t/>‘ 0
-2 yTr
_4 . ) )
-RC 0 RC 2RC 3RC
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Summary

15: Transients (A)

e 1st order circuits: include one C or one L.

Differential Equation

e e o wvc or iy, never change abruptly. The output, y, is not necessarily
state inputs . .

Step Input continuous unless it equals v¢.

Negative exponentials I

Exponential Tim I I I . —

Exponential Time e Circuit time constant: 7 = Ry, C or -

:_“:::*‘:y Transients o Rry, is the Thévenin resistance seen by C or L.
Transient Amplitude o Same 7 for all voltages and currents.

Capacitor Voltage

Continuit .

> Summary e Output = Steady State + Transient

o Steady State: use nodal/Phasor analysis when input is piecewise
constant or piecewise sinusoidal. The steady state has the same
frequency as the input signal.

o Transient: Find vo(0—) or i1, (0—): unchanged at ¢t = 0+
Find 3(0+) assuming source of ve(0+) or iy (0+)
Amplitude never complex, never depends on t.

o y(t) = yss(t) + (y(04) — yss(0+)) e/
See Hayt Ch 8 or Irwin Ch 7.

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 -11 / 11



> 16: Transients (B)

Piecewise steady
state inputs
Sinusoidal Input
Multiple
Discontinuities
Switched Circuit
Transfer Function
Transient from
Transfer Function
Opamp Circuit
Transient

Summary

16: Transients (B)
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Piecewise steady state inputs

16: Transients (B)

Piecewise steady
D> state inputs
Sinusoidal Input
Multiple
Discontinuities
Switched Circuit
Transfer Function
Transient from
Transfer Function
Opamp Circuit
Transient

Summary

We will consider input signals that are sinusoidal or constant for a particular
time interval and then suddenly change in amplitude, phase or frequency.

Output is the sum of the steady state and a transient:
y(t) = yss(t) + yre(t)

Steady state, yss(?), is the same frequency as the input;

use phasors + nodal analysis.

(t) 30

X L)
10k

Eu

Transient is always yr,(t) = Ae™* at each change. [only one C or L]

Vs /\/L/\,/\/\jWWVVVW\
— V__¥

(0 W

Y Tr(t) L—
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Sinusoidal Input

16: Transients (B)

Piecewise steady
state inputs

> Sinusoidal Input
Multiple
Discontinuities
Switched Circuit
Transfer Function
Transient from
Transfer Function
Opamp Circuit
Transient

Summary

Fort < 0: y(t) =x(t) =0
Fort > 0: x =2sinwt= X = —2j

x(t) Bk )

7= RC = 1ms, w = 10krad/s | C
11
Steady State (for t > 0) ___“
Y 1 _ o) —

YV =Xx%=-2jx01L—84°

yss(t) = 0.2 cos (wt — 174°) =0
Steady State + Transient ET— t(ni]s) I
y(t) = 0.2 cos (wt — 174°) + Ae /" 0.4
y
Transient Amplitude g O'z ,
y(04) = 0.2cos (—174°) + A ool v | | |
= —0.198+ A o0 123

y(0+) = y(0—) = 0= A = 0.198 = yr,(¢) = 0.198¢ "/~

Complete Expression for y(t)
y(t) = 0.2cos (wt — 174°) + 0.198¢ ™"/~
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Multiple Discontinuities

For 0 <t <02rms: X =—-27, wg =10k, 7= 1ms o R0
prev page = y(t) = 0.2 cos (wt — 174°) 4+ 0.198¢~ /" ﬂ7
Steady State  (for ¢ > 0.00027 = 0.63 ms) BE
X = —3j, Wo = 5k —

Y

_ 1 _ o
X = JosROTT — 0.2 —-179

Y =X x % =-3jx0.2£—79°
yss(t) = 0.59 cos (wat — 169°)

x(t)
AN o N o~

Steady State + TranSient (fOI’ t Z 063 mS) - t (ms)
y = 0.59 cos (wyt — 169°) + Be™ 00000/ )

Transient Amplitude (at t = 0.63 ms)
(0.000634) = 0.59 cos (0.00063ws — 169°) + B WA
=0.577T+ B g '

y(t)
o
<<

y(0.00063—) = 0.2 cos (0.00063w; — 174°) 4 0.198¢ """/ = —(.092
= 0577+ B=-0.092 =B =-0.67T= YTy = _0'676—@—0.00063)/7

Complete Expression for y(t)  (for t > 0.63 ms)
y(t) = 0.59 cos (wot — 169°) — 0.67e " (t0-00063)/7
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Switched Circuit

16: Transients (B)

Piecewise steady
state inputs
Sinusoidal Input
Multiple
Discontinuities

> switched Circuit
Transfer Function
Transient from
Transfer Function
Opamp Circuit
Transient

Summary

Operating the switch changes T:
Closed: 7¢ = (1k||9k) x C = 0.9 ms
Open: 7o =9k x C = 9ms

Switch closed at ¢t = 0.
Yss — 10 x 19—0 =9V
y(t) =9 — 9e "7

y(2—) =9 — 9e 7% = 8.02

Switch opened at ¢t = 2.
yss =0V
y(t) =04 Ae” /o
y(24) = A =y(2—) = 8.02
y(20) = 8.02¢~*°"?/° = 1.09

y(t)

~

Switch
o O

)

=%

Sy oo

o N

o
N
()]
—
o r
—_—
ol
N
o

02 5 10 15 20
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Transfer Function

Phasor nodal analysis: 1R 10R

Y
Y _ 5R _ 10jwRC+1 __ Le+1 c |
X 7 I5R+ 0B T 30jwRCH5 0. 29w+1 HVESR
Corner fregencies: p = 1555, ¢ = gaa. HF gain = 5 L T
Thévenin Equivalent driving C": 1R 10R
Vi = —X Ry, = 10R||15R =6R, T=6RC L 2 R
2 1 2 1 - ﬁ) %ﬂ
V= X X 6jwRC+1 X X JwT+1 L R ¢
Denomlnator is always (ij + 1) =
Linearity: Y =aX + bV v
KCL @ supernode: (YJ“XJ){X + 5Y =0=3Y+V -X=0 a v+
_ 1 1y, 1 X ([ 5jwt+3 Vol |5R
Y =3X —3V=3X—-5X (]w7—|—1) =15 (—fmﬂ ) T L

Denominator of bV is unchanged by adding a X

(1) Denominator corner frequency is always = for any transfer function in the circuit.

(2) V=0atw=o00,s0sinceY =aX +bV, a= (= HF-gain)

X oo

V' is never discontinuous so AY discontinuity = HF-gainx A X discontinuity
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Transient from Transfer Function

Calculate Transfer Function 6R
V=X |, V., . VoY _ S e W
KCL @ V: AR + 18/_R)_<F]wcv + 55 =0 0] AR 2R ]y
KCLOY: £=X + == =0 — |
2R 6R
SR C
— Transfer Function: % = 385;‘;]}%%11136 A

DC gain: 3, HF gain: & =1, 7 =320 —9RC

Steady State

x(t)

T O O = CRRN
=g
=

t <0 yss(t) = i—gx(t) = ﬁ X —d = _3% |
t > 0: ySS(t> — 1—633(t> = 16 X +4 = +31 RC 0 RC_RC_ 3RC

Steady State + Transient (for ¢ > 0)
t>0:y =3+ Ae”"

Discontinuity Gain (= HF Gain @ w = o)
Ay =y(0+) —y(0—) = JAz = : x 8 =2
(3% _|_A) _ (_3%) — 9= A = _4% RC 0 RC 2RC  3RC

y(t)
A2 o v o

Complete Expression
t>0: y(t) = 3% — 4%6_t/2RC
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Opamp Circuit Transient

Calculate Transfer Function (Inverting Amplifier)
Y _ _Zp _ _1 , AB(4BRi5e
X~ R R

) _ _ 4 4wRC+1
4R—|—(4R+ju+c) 8jwRC+1
DC gain: —4, HF gain: —2, 7 = 8RC
Steady State

t <O0: yss(t) = —4’0(15) =0
t>0: yss(t) = —4dv(t) = —-4x1=-4
Steady State + Transient
t>0y=—4+ Ae /"
Discontinuity Gain (= HF Gain)

y(0+) — y(0—) = =2 (2(0+) — 2(0-))

= -2
(-4+A)—(0)=-2=>A=2
Complete Expression

t>0: y(t) =

—4 + Q¢ ¥/8RC

E1.1 Analysis of Circuits (2018-10340)

For opamp circuits get 7 from the transfer function because Rry, is difficult to work out.

<05
0
0 5RC 10RC 15RC 20RC
t
2
k
0
-zk
4 Y

5RC_10RC 15RC 20RC
t
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Summary

16: Transients (B)

Piecewise steady
state inputs

Sinusoidal Input
Multiple
Discontinuities
Switched Circuit
Transfer Function
Transient from
Transfer Function
Opamp Circuit
Transient

> Summary

Ist order transients: circuits with only one C' or L

Transients arise from abrupt changes in the frequency, phase or
amplitude of the input signal or else a switch changing

Output is steady state + transient

Steady state: nodal analysis — transfer function

Transient: Ae” /™ where:

O

O

Two methods to find 7:

> Thévenin seen by L or C: 7 = Ry, C or RLM

> Transfer function denominator: (ajw +b) = 717=—- =%
Two methods to find A:

> Continuity: AVe =0o0r Al =0
> Discontinuity gain: Aoutput = HF gain xAinput

For further details see Hayt Ch 8 or Irwin Ch 7.
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17: Transmission
D> Lines

Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

Power Flow

Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

17: Transmission Lines
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Transmission Lines

17: Transmission
Lines

> Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

Power Flow

Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

vo(?)

— i — vi(9)

Previously assume that any change in vg(t) appears instantly at vr ().

This is not true.

If fact signals travel at around half the speed of light (¢ = 30 cm/ns).

Reason: all wires have capacitance to ground and to neighbouring
conductors and also self-inductance. It takes time to change the current
through an inductor or voltage across a capacitor.

A transmission line is a wire with a uniform goemetry along its length: the
capacitance and inductance of any segment is proportional to its length.
We represent as a large number of small inductors and capacitors spaced
along the line.

The signal speed along a transmisison line is predictable.

E1.1 Analysis of Circuits (2017-10213)
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Transmission Line Equations +

17: Transmission
Lines

Transmission Lines
Transmission Line
> Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

Power Flow

Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

A short section of line 4z long:

*———x——————— >
' L
v(z,t) and i(x,t) depend on both e A, iTonD)
- . <T ic
position and time. 1 i
v(x,1) C== |v(xt+ox,1)
Small éx = ignore 2nd order derivatives: Ly -
ov(x,t) _ Ov(x+dzx,t) A Qv i(x,1) V, i(x+ox,t)

ot ot — ot
Basic Equations
KVL:  wv(zx,t) = Vo 4+v(x + dx,t) + 1}
KCL:  i(x,t) =ic + i(x + dx,t)
Capacitor equation: C% =ic =i(x,t) —i(x + oz, t) = —%&c
Inductor equation (L; and Lo have the same current):
(L1 + Lo) % =Vi+ Vo =v(z,t) —v(x+dx,t) = —%5m

Transmission Line Equations

Co% = —g—; where Cy = %is the capacitance per unit length
Oi J Li+Ly -
Log: = —5% (Farads/m) and Lo = 4522 is the total

inductance per unit length (Henries/m).

E1.1 Analysis of Circuits (2017-10213)
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[Partial Derivatives]

When we differentiate a function of two variables, we keep one of the variables fixed while differentiating
with respect to the other; this is called a partial derivative and is written with a curly version of the
letter “d’. Thus

Ov A y v(x 4 dx,t) —v(z,t) ov , .. vz, t+dt) —ov(x,t)

— = lim and — = lim )
ox Sz—0 ox ot 5t—0 Y

Higher order derivatives may be obtained by differentiating the partial derivatives again to give

82vé 0 [ Ov &AQ @ and 0%v A 0 [ Ov
ox2 Az \ox/)  Ot2 ot \ ot dxdt Oz \ ot )
Provided the second order partial derivatives are continuous, the order of differentiation doesn’t matter

92 v . 82%v
so that 5057 = 5755

If we take the normal Taylor series with respect to x, v(x + 0z, t) = v(z,t) + %&E + O (62?),
and differentiate each term with respect to ¢, we get

Ov(x + oz, t)  Ov(zx,t) n 0%v(x,t)
ot ot OtOx

—8”(%;’;’15) as assumed on the previous slide.

ox + O (5x2) .

ov(x+dx, t)
ot

If 0x — 0, then we get —

E1.1 Analysis of Circuits (2017-10213) Transmission Lines: 17 — note 1 of slide 3



[Deriving the Transmission Line Equations]

This note provides slightly more detail about how we derive the transmission line equations. By ex-
panding v(z + dx,t) and i(x + dx,t) as Taylor Series in x, we can write

v(x 4 dx,t) = v(x,t) + 5xg—v(aj, t) 4+ O0(6z?) and i(x + dz,t) =i(x,t) + 53:%(33, t) + O(8z2).
x x

From the diagram on the previous page, the voltage across the capacitor is v(z + dx,t) and so the
capacitor equation is

C’%(x + dx,t) = i(x,t) —i(x + oz, t).

Substituting in the Taylor series expansions for v(x 4 dx,t) and i(xz + dx,t) and also substituting
C = Cydx results in

ov 2 5 01 5
Codzx | — (x,t) + ox (z,t) + O(6x~) = —dr—(z,t) — O(dx*)
ot x0
ov 0%v ot
= Co| —=—(x,t)+6 1) + O(6z2 = ——(z,t) — O(dz).
o (5 @0+ 805 5 (at) + Ol6a?) ) 2 (a.t) — 05w
Finally, we let dx — 0 and so all the terms that are O(dx) or smaller disappear which leaves
ov o1
Co—(z,t) = —— (x, t).
0ot (2,%) ox (2,1)
The inductor equation, Lo% = —g—z, can be derived in a similar way.

E1.1 Analysis of Circuits (2017-10213) Transmission Lines: 17 — note 2 of slide 3



Solution to Transmission Line Equations

17: Transmission
Lines

Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

Power Flow

Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

Transmission Line Equations: CO% — _% Lo — _g_g
General solution: v(t,z) = f(t — L)+ g(t + )

ft—= ) g(t+ )

it,z) =

Whereu—\/ andZO—\/(ng.

u is the propagation velocity and Zj is the characteristic impedance.
f() and g() can be any differentiable functions.

Verify by substitution:
i _ (—f’(t Do) o )

- Oz Zo U

=Co(f/(t—2)+g'(t+2)) =Cod
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Forward Wave

17: Transmission
Lines

Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

> Forward Wave

Forward 4+ Backward
Waves

Power Flow

Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

Suppose: vol?)
u = 15cm/ns ISl =45 = 4
And g(t) _ 0 C) x=0 N x=90 |:::| TVL(I)
Suet) = f(-5) S I i}
e Atx=0cm %‘]v f(t-0/u) f(t}45/u) f(t-90/u)
vslt) = f(t— D) IS L A L
o Atz =45 cm [A], o\/ 5 \/4 6\/

8 Time (ns) 10

v(45,t) = f(t — 475)
f(t — 22) is exactly the same as f(t) but delayed by 22 = 3 ns.
e Atz =90cm [A], vr(t) = f(t — 22); now delayed by 6 ns.

Waveform at x = 0 completely determines the waveform everywhere else.

t=4ns /\/\\v/\ f(4-x/u)

0 20 40 60

Snapshot at ¢ty = 4 ns:
the waveform has just
arrived at the point
xr = utg = 60 cm.

. .80
Position (cm)

f(t — %) is a wave travelling forward (i.e. towards +x) along the line.
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Forward + Backward Waves

17: Transmission

o Similarly g(t + £) is a wave travelling backwards, i.e. in the —x direction.

Transmission Lines

Transmission Line ’U(I‘) t) — =0 “ f(t-O/u) /¥g(t+0/u)
Equations +
Solution to f(t — %) —+ g(t - %) s /\Wg(t+45/u)

Transmission Line
Equations

g(t+90/u) f(t-90/u)
Forward Wave At Xr = O cm [A]v x=90 N / \ ~

Forward +

> Backward Waves vs (t) — f(t) —|_ g(t) 0 2 4 6 8 Time (ns) 10

Power Flow

Reflections
Reflection

Coefficionts At x = 45 cm [A], g is only 1 ns behind f and they add together.
Driving a line At x =90 cm [A], g starts at £ = 1 and f starts at t = 6.

Multiple Reflections

Transmission Line
Characteristics +

A vertical line on the diagram 0
gives a snapshot of the entire

Summary

]
o

line at a time instant ¢. _ g

f and g first meet at ¢t = 3.5 2.40 B

and z = 52.5. i
o 60 f::

Magically, f and g pass i

through each other entirely »

unaltered. . .
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Power Flow

17: Transmission
Lines

Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

> Power Flow

Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

Define f,(¢t) = f (t — £) and g,(t) = g (t + £) to be the forward and
backward waveforms at any point, x.

vo(?) i is always

ix(t)FTVx 0 m T"L ” measured in the
——————— X —————

+ve x direction.
Then  vy(t) = fu(t) + g2(t) and  dx(t) = Z5 ' (fo(t) — gu (1))
Note: Knowing the waveform f,.(t) or g, (t) at any position z, tells you it at
all other positions: f,(t) = fz (t — %) and gy (t) = g, (¢ + £5).

Power Flow

The power transferred into the shaded region across the boundary at x is

Py(t) = va(t)ix(t) = Zy " (fo(t) + g2(1)) (fu(t) — g2(1))
_ f2 () gz (®)
Zo Zo
fz carries power into shaded area and g, carries power out independently.

Power travels in the same direction as the wave.
The same power as would be absorbed by a [ficticious] resistor of value Zj.

E1.1 Analysis of Circuits (2017-10213)
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Reflections

17: Transmission
Lines

Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

Power Flow

> Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

vs(?) io(?) i1(0) Uz = fo t go

Ry100 Z=100
a TVO(Z‘) R,=300 | ["2®

From Ohm’s law at z = L, we have v (t) = i (t)RL

Hence (fL(t) + g1(t)) = Z5 ' (f(t) — g(t)) Ry

From this: g, (t) = ﬁﬁéﬁ x fr (t)

We define the reflection coefficient: pr, = %8 = gilgg = +0.5

Substituting g1, (t) = pr fL (t) gives
vr(t) = (1+pr) fr(t) and i (t) = (1 — pr) Z5 " fr(t)

vy io(®

- -

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Time (ns) Time (ns)

At source end:  go(t) = prfo (t — 22) i.e. delayed by 22 =12 ns.
Note that the reflected current has been multiplied by —p.

E1.1 Analysis of Circuits (2017-10213)

iz = 2y (fz — 9z)
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Reflection Coefficients
17: Transmission R 1
Lines J— R_ZO Zo
Transmission Lines ’0 o R+ZO Zi—f—l
1E'ranstr_nission Line . (t) 0 a0
uations + J—
S:|ution to f(t) 1 —|_ p 1 \
Transr_nission Line ir, (t)Z() 1 o 1 2 3 4 5
Equations — 1
F:rwarcl Wave f(t) p "
P o e p depends on the ratio Z%.
Power Flow
eflections R (% (t) 1 (t)Z
*Reflecion Z | P | TFw | Trw Comment
s e oo | +1 2 0 Open circuit: v, = 2f, i1, =0
Multiple Reflections 3 | +0.5 | 1.5 0.5 R>Zy=p>0
Characteristics ~ + 1 0 1 1 Matched: No reflection at all
Summar
' L1 -05]| 05 1.5 R<Zy=p<0
0 | -1 0 2 Short circuit: vy =0, ip = 2
Note: Reverse mapping is R = 1;—5 = f_r—g X 2

Remember: p € {—1,+1} and increases with R.

E1.1 Analysis of Circuits (2017-10213)
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Driving a line

17: Transmission
Lines

Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

Power Flow

Reflections
Reflection
Coefficients

> Driving a line
Multiple Reflections

Transmission Line
Characteristics +

Summary

vs(?) io(2) ir(%)
Z=100 Jo + G
R=20 0 (f) T fe—9x
vo(?) R;=300| | [ z Zo

From Ohm's law at z = 0, we have vy(t) = vs(t) — ig(t)Rs where Rg is
the Thévenin resistance of the voltage source.

Substituting v ()

fo(t) = RSZ_EZ vs(t) + RS+§O go(t) = Tovg (t) + pogo(t)

So fo(t) is the superposition of two terms:

= fo+ g0 and iy(t) = fOZ;OgO leads to:

(1) Input vg(t) multiplied by 79 = RSZ_fZ which is the same as a
potential divider if you replace the line with a [ficticious] resistor Zj.
(2) The incoming backward wave, go(t), multiplied by a reflection

coefficient: py = g;g{g’

20—100
204100

For Rg =20: 79 = 52 - =0.83 and pg= = —0.67.

204100
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Multiple Reflections

17: Transmission . . _ 2

Lines vs(?) io(?) (1) PO = —3
Transmission Lines — Zy=100 — l
Transmission Line Rs=20 vo(?) ‘ R,=300 vi(?) pL 2
Equations + ‘ Vy = fZC —|_ giB

Solution to
Transmission Line —
Equations

Forward Wave EaCh eXtI’a b|t Of f() |S fo®
Waven |+ Brckver delayed by 2L (=12ns)

Power Flow

and multiplied by prpo :

Reflections 0 5 10 15 20 25 Tso
. ime (ns)
Reﬂe.ctlon
::)o-ef-ﬁcientl:-s fO (t) — g,
riving a line 0O i 2L1
Multiple Zi:o TOPLPoVS ( T Tu ) ’\/\, —
> Reflections Vv
Transmission Line T
Characteristics + gL (t) = poO (t - E) 0 > 10 15 20 2 Ti?;r?e (ns)
Summary
v
vo(t) = . v g
fo(t —|_ gL ( o E) 0 ° 10 15 20 2 Tﬁge(ns)
v (t) = o
L
fo(t—2) +gr(t) =
u
0 5 10 15 20 25 Ti?ho]e (ns)
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Transmission Line Characteristics

17: Transmission
Lines

Integrated circuits & Printed circuit boards

Transmission Lines
Transmission Line
Equations +

Solution to
Transmission Line
Equations

Forward Wave
Forward 4+ Backward
Waves

Power Flow

Reflections
Reflection
Coefficients

Driving a line
Multiple Reflections

Transmission Line
> Characteristics +

Summary

High speed digital or high frequency analog
interconnections
Zo =~ 10092, u ~ 15cm/ns.

Long Cables

Coaxial cable (“coax”): unaffacted by external fields;

use for antennae and instrumentation.
Zo=500r 759, u~ 25cm/ns.

Twisted Pairs: cheaper and thinner than coax and
resistant to magnetic fields; use for computer network

and telephone cabling. Zy ~ 1002, u ~ 19cm/ns.

When do you have to bother?

Answer: long cables or high frequencies. You can completely ignore
transmission line effects if length < Froquency

Audio (< 20 kHz) never matters.
Computers (1 GHz) usually matters.
Radio/TV usually matters.

u —
uency

wavelength.
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[ Transmission Line Grounds]

For long coaxial or twisted pair cables, the “ground” wire has significant inductance and so its two ends
are not necessarily at the same voltage. This means that v, (t), fz(t) and g, (t) are measured relative
to the “ground” at position = as shown. It follows that potential differences like vr(t) = va(t) —vp(t)

make sense but talking about v 4 (t) on its own is meaningless.

A

O TVS(f) vme vRa)T R

B

Integrated circuits and printed circuit boards normally have a low impedance “ground plane’ covering
the entire circuit; in a multilayer printed circuit board this typically forms one entire layer. In this case
we have a single ground reference for the whole circuit and it now makes sense to talk about the voltage

“at” a node and to say vr(t) = val(t).

. A
vi(t)
VR(Z‘)T R

O Tvs@
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Summary

T e Signals travel at around u ~ ¢ = 15cm/ns.

Jransmission Lines Only matters for high frequencies or long cables.

Equations

i;::‘tsi;r;s:;n - ’ e Forward and backward waves travel along the line:

St . folt)=fo(t—1%) and  go(t) =go (t+7)

\Z\Z%v:?::wB“kward o Knowing f, and g, at any single x position tells you everything

Ref lections e Voltage and current are: v, = f, + g, and 7, = f“;Z;Og”“

“g:elv‘i%earzs:}le _ e Terminating line with R at x = L links the forward and backward waves:
ELE%E:EQ?;S:“: o backward wave is g;, = pr, fr, where p;, = }}%:ng

> Summary o the reflection coefficient, pr, € {—1,+1} and increases with R

o R = Z, avoids reflections: matched termination.
o Reflections go on for ever unless one or both ends are matched.

o f is infinite sum of copies of the input signal delayed successively
by the round-trip delay, % and multiplied by pr,po.
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18: Phasors and
> Transmission Lines

Phasors and
transmision lines

Phasor Relationships
Phasor Reflection
Standing Waves
Summary

Merry Xmas

18:

Phasors and Transmission Lines
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Phasors and transmision lines

18: Phasors and

18: Phasors anc For a transmission line: v(t,x) = f (t _ %) + g (t + %) and

Phasors and

> transmision lines i(t,x) = Z()_1 (f(t — %) —g(t + £>)

u
Phasor Relationships

Phasor Reflection We can use phasors to eliminate ¢ from the equations if f() and g() are
Standing Waves

—— sinusoidal with the same w: f(t) = Acos (wt + @) = F = Ael?.
Merry Xmas Then f:l:(t) — f(t — %) — ACOS (w (t _ %) _I_ ¢)
= F, = Acd(C8e40) = peide—ite_ | o—ike

where the wavenumber is k = <.
Units: w is “radians per second”, k is “radians per metre” (note k£ ox w).

Similarly G, = Goet7%®.
Everything is time-invariant: phasors do not depend on t.

Nice things about sine waves:
(1) a time delay is just a phase shift
(2) sum of delayed sine waves is another sine wave
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Phasor Relationships

Time Domain Phasor Notes

f(t) = Acos (wt +¢) F = Ae? F indep of ¢

fa: o ( _%) —Aej(¢__x> |Fx|E|F|
_Acos (wt—i—gb “r ) _ [e—ikx indep of
Ty(t) = fa t_@ F, = Fye ikv=o) Delayed by #—=
9y(t) = go (t + @ Gy = Gpetikly=s) Advanced by ==

) _ fa: t)—qg.(t o Fa:—Gq;

in(t) = ( )Zog (1) I, = Zo
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Phasor Reflection

18: Phasors and

Transmission Lines
Phasors .ancl . .>]x Ilb—‘
transmision lines Z()ZIOO
Phasor Relationships
D> Phasor Reflection Vx RL:3OO VL
:tanding Waves X " |
ummary
Merry Xmas o G

Phasor hm's law: Y& = = L+GL

asors obey Ohm's law: 7= = Ry, 7o (F1—G)
. _ Rp—Zy
So G, = pr, Fr, where p;, = R 7
Gy _ Gre dkt—=) —2jk(L—x)
At any z, = FeerT e = PLE
Ohm’s law at the load determines the ratio % everywhere on the line.

Note that |S=| = |p;| has the same value for all z.
F, P

Ve =F,+ G, = F, (1+ ppe2ikL=2)
I, =Z" (Fy — Gy) = Zy ' Fy (1 — pre k=)

The exponent —2jk (L — x) is the phase delay from travelling from = to L
and back again (hence the factor 2).
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Standing Waves

— X=uff=50cm ———

Fo=1j, =300 MHz

Z=100 4 r
u=15cm/ns |V, R;=300| ||V
5

VX and vx(t),

Forward wave phasor: F, = Fe 7k

Backward wave phasor: G, = prFye 2k (L=2) = s Fe
Line Voltage phasor: V, = F, + G, = Fe 7% (1 + pLe_ij(L_x))

Line Voltage Amplitude: |V, | = |F||1 + pre=2kL=o)] varies with = but not ¢

—2jkLe—|—jk:I:

Max amplitude equals 1 + |pr| at values of x where F, and GG, are in phase. This occurs

every % away from L where X is the wavelength, A = 2% = %

Min amplitude equals 1 — |p | at values of  where F, and G, are out of phase.

Standing waves arise whenever a periodic wave meets its reflection: e.g. ponds, musical
Instruments, microwave ovens.
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Summary

18: Phasors and e Use phasors if forward and backward waves are sinusoidal with the
Phasors and same w

transmision lines ) ”

Phasor Relationships @) fZB (t) _= f (t — £) — Fx == Foe_J x

Phasor Reflection u .

Standing Waves O (g (t) =g (t + £) — G:B o G06+]]€ZC

> Summary u

Merry Xmas > k= * is the wavenumber in “radians per metre”

e Time delays o~ phase shifts: F}, = F e ik(y—=)
e When a periodic wave meets its reflection you get a standing wave:
o Oscillation amplitude varies with z: o |1 + pre 2/"L=7)|

o Max amplitude of (1+ |pr|) occurs every 3
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