Revision Lecture 1: Nodal Analysis & Fre- \triangleright quency Responses Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude Responses (linear factors) Filters Resonance

Revision Lecture 1: Nodal Analysis & Frequency Responses

Exam

Revision Lecture 1: Nodal Analysis & **Frequency Responses** ▷ Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) Filters Resonance

Exam Format

Question 1 (40%): eight short parts covering the whole syllabus.

Questions 2 and 3: single topic questions (answer both)

Syllabus

Does include: Everything in the notes.

Does not include: Two-port parameters (2008:1j), Gaussian elimination (2007:2c), Application areas (2008:3d), Nullators and Norators (2008:4c), Small-signal component models (2008:4e), Gain-bandwidth product (2006:4c), Zener Diodes (2008/9 syllabus), Non-ideal models of L, C and transformer (2011/12 syllabus), Transmission lines VSWR and crank diagram (2011/12 syllabus).

Nodal Analysis

Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) Filters

Resonance

(1) Pick reference node.

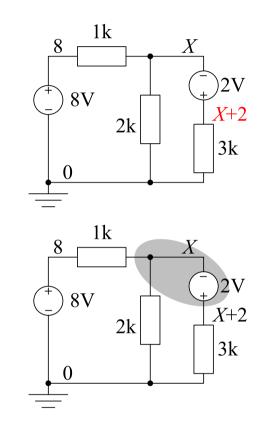
(2) Label nodes: 8, X and X + 2 since it is joined to X via a voltage source.

(3) Write KCL equations but count all the nodes connected via floating voltage sources as a single "super-node" giving one equation

$$\frac{X-8}{1} + \frac{X}{2} + \frac{(X+2)-0}{3} = 0$$

Ohm's law always involves the difference between the voltages at either end of a resistor. (Obvious but easily forgotten)

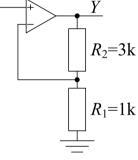
(4) Solve the equations: X = 4



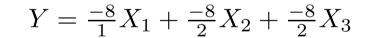
Op Amps

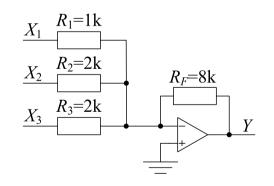
Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) Filters Resonance

- Ideal Op Amp: (a) Zero input current, (b) Infinite gain (b) $\Rightarrow V_+ = V_-$ provided the circuit has negative feedback.
- Negative Feedback: An increase in V_{out} makes $(V_+ V_-)$ decrease. Non-inverting amplifier $X \longrightarrow Y$
 - $Y = \left(1 + \frac{3}{1}\right)X$



Inverting amplifier



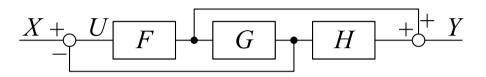


Nodal Analysis: Use two separate KCL equations at V_+ and V_- . Do not do KCL at V_{out} except to find the op-amp output current.

Block Diagrams

Revision Lecture 1: Nodal Analysis & Frequency Responses Exam Nodal Analysis **Op Amps** Block Diagrams Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) Filters Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.



To analyse:

- 1. Label the inputs, the outputs and the output of each adder.
- 2. Write down an equation for each variable:
 - U = X FGU, Y = FU + FGHU
 - Follow signals back though the blocks until you meet a labelled node.
- 3. Solve the equations (eliminate intermediate node variables):

•
$$U(1+FG) = X \Rightarrow U = \frac{X}{1+FG}$$

• $Y = (1 + GH)FU = \frac{(1+GH)F}{1+FG}X$

[Note: "Wires" carry information not current: KCL not valid]

Diodes

Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** \triangleright Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors)

Filters

Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

$$\Box$$
 Off: $I_D = 0$, $V_D < 0.7 \Rightarrow$ Diode = open circuit

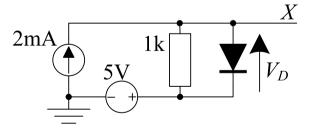
 \Box On: $V_D = 0.7$, $I_D > 0 \Rightarrow$ Diode = 0.7 V voltage source

(a) Guess the mode

- (b) Do nodal analysis assuming the equality condition
- (c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.
 - Assume Diode Off
 - X = 5 + 2 = 7 $V_D = 2$ Fail: $V_D > 0.7$
 - Assume Diode On

$$X = 5 + 0.7 = 5.7$$

 $I_D + \frac{0.7}{1 \text{ k}} = 2 \text{ mA}$ OK: $I_D > 0$



Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** Diodes Reactive Components Phasors **Plotting Frequency** Responses LF and HF Asymptotes **Corner frequencies** (linear factors) Sketching Magnitude Responses (linear factors) Filters Resonance

$$\Box$$
 Impedances: R , $j\omega L$, $\frac{1}{j\omega C} = \frac{-j}{\omega C}$.

- Admittances:
$$\frac{1}{R}$$
, $\frac{1}{j\omega L} = \frac{-j}{\omega L}$, $j\omega C$

 $\Box\,$ In a capacitor or inductor, the Current and Voltage are 90° apart :

- CIVIL: Capacitor - I leads V; Inductor - I lags V

Average current (or DC current) through a capacitor is always zero
 Average voltage across an inductor is always zero

□ Average power absorbed by a capacitor or inductor is always zero

Phasors

Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** \triangleright Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) Filters

Resonance

 $x(t) = A\cos(\omega t + \theta) \qquad X$ $\max(x(t)) = A$

number.

WaveformPhasor $x(t) = F \cos \omega t - G \sin \omega t$ X = F + jG[Note minus sign] $x(t) = A \cos (\omega t + \theta)$ $X = Ae^{j\theta} = A \angle \theta$ $\max (x(t)) = A$ |X| = A

A phasor represents a time-varying sinusoidal waveform by a fixed complex

x(t) is the projection of a rotating rod onto the real (horizontal) axis.

X = F + jG is its starting position at t = 0.

RMS Phasor: $\widetilde{V} = \frac{1}{\sqrt{2}}V \implies \left|\widetilde{V}\right|^2 = \langle x^2(t) \rangle$ Complex Power: $\widetilde{V}\widetilde{I}^* = |\widetilde{I}|^2 Z = \frac{|\widetilde{V}|^2}{Z^*} = P + jQ$ P is average power (Watts), Q is reactive power (VARs)

Revision Lecture 1: Nodal Analysis & Frequency Responses Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors Plotting Frequency \triangleright Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) Filters Resonance

Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.

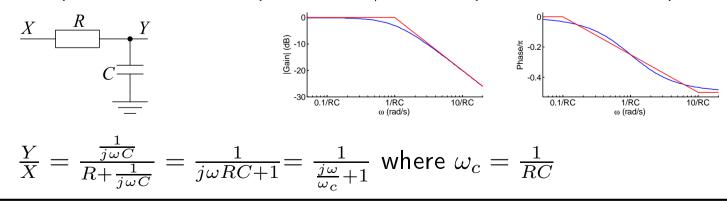
• If
$$\frac{V_2}{V_1} = A (j\omega)^k = A \times j^k \times \omega^k$$
 (where A is real)
• magnitude is a straight line with gradient k:

$$\log \left| \frac{V_2}{V_1} \right| = \log |A| + k \log \omega$$

• phase is a constant $k \times \frac{\pi}{2}$ (+ π if A < 0):

$$\angle \left(\frac{V_2}{V_1}\right) = \angle A + k \angle j = \angle A + k \frac{\pi}{2}$$

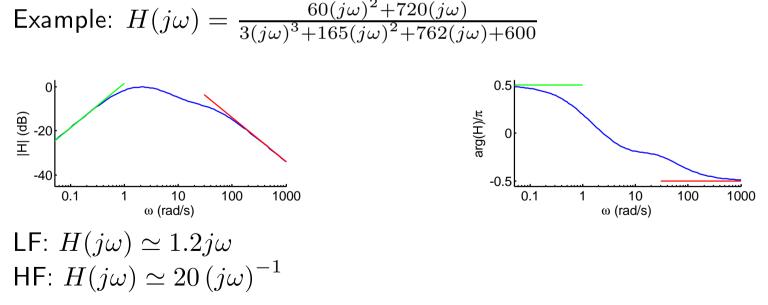
• Measure magnitude response using decibels = $20 \log_{10} \frac{|V_2|}{|V_1|}$. A gradient of k on log axes is equivalent to $20k \, dB/decade$ (×10 in frequency) or $6k \, dB/octave$ (×2 in frequency).



Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF > Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) 0 Filters Resonance (dB) (H) -20 -40

 \Box Frequency response is always a ratio of two polynomials in $j\omega$ with real coefficients that depend on the component values.

- The terms with the lowest power of $j\omega$ on top and bottom gives the low-frequency asymptote
- The terms with the highest power of $j\omega$ on top and bottom gives the high-frequency asymptote.



Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes **Corner frequencies** \triangleright (linear factors) Sketching Magnitude **Responses** (linear factors) Filters Resonance

$$\Box \text{ We can factorize the numerator and denominator into linear terms of}$$

the form $(aj\omega + b) \simeq \begin{cases} b & \omega < \left|\frac{b}{a}\right| \\ aj\omega & \omega > \left|\frac{b}{a}\right| \end{cases}$

□ At the corner frequency, $\omega_c = \left|\frac{b}{a}\right|$, the slope of the magnitude response changes by ±1 (±20 dB/decade) because the linear term introduces another factor of ω into the numerator or denominator for $\omega > \omega_c$.

 $\Box \text{ The phase changes by } \pm \frac{\pi}{2} \text{ because the linear term introduces another factor of } j \text{ into the numerator or denominator for } \omega > \omega_c.$

- The phase change is gradual and takes place over the range $0.1\omega_c$ to $10\omega_c$ ($\pm \frac{\pi}{2}$ spread over two decades in ω).

 $\Box \text{ When } a \text{ and } b \text{ are real and positive, it is often convenient to write} (aj\omega + b) = b\left(\frac{j\omega}{\omega_c} + 1\right).$

 \Box The corner frequencies are the absolute values of the roots of the numerator and denominator polynomials (values of $j\omega$).

Revision Lecture 1: Nodal Analysis & Frequency Responses Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear

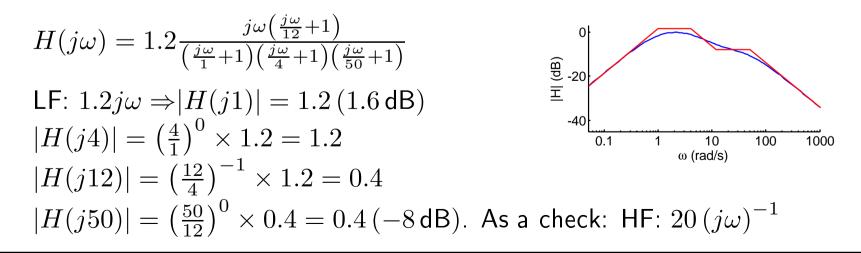
▷ factors)

Filters

Resonance

- 1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
- 2. Find LF and HF asymptotes. $A(j\omega)^k$ has a slope of k; substitute $\omega = \omega_c$ to get the response at first/last corner frequency.
- 3. At a corner frequency, the gradient of the magnitude response changes by $\pm 1 \ (\pm 20 \ \text{dB/decade})$. + for numerator (top line) and for denominator (bottom line).

4. $|H(j\omega_2)| = \left(\frac{\omega_2}{\omega_1}\right)^k |H(j\omega_1)|$ if the gradient between them is k.



LF and HF asymptotes

The LF and HF asymptotes give you both the *magnitude* and *phase* at very low and very high frequencies. The LF asymptote is found by taking the terms with the lowest power of ω in numerator and denominator; the HF asymptote is found by taking the terms with the highest power of ω .

Magnitude response

The corner frequency for a linear factor $(aj\omega + b)$ is at $\omega_c = \left| \frac{b}{a} \right|$. At each corner frequency, the slope of the magnitude response changes by $\pm 6 \, dB/octave$ (= $\pm 20 \, dB/decade$). The change is +ve for numerator corner frequencies and -ve for denominator corner frequencies. An octave is a factor of 2 in frequency and a decade is a factor of 10 in frequency. The number of decades between ω_1 and ω_2 is given by $\log_{10} \frac{\omega_2}{\omega_1}$.

Phase Response

For each corner frequency, ω_c , the slope of the phase response changes *twice*: once at $0.1\omega_c$ and once, in the opposite direction, at $10\omega_c$. The change in slope is always $\pm 0.25\pi \, rad/decade$. If a and b have the same sign (normal case), then the first slope change (at $0.1\omega_c$) is in the same direction as that of the magnitude response (+ve for numerator and -ve for denominator); if a and b have opposite signs (rare), then the slope change is reversed. The second slope change (at $10\omega_c$) always has the opposite sign from the first.

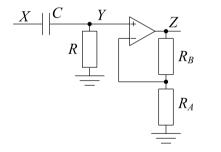
Filters

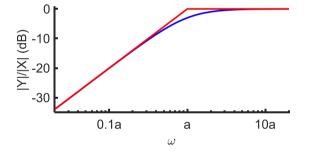
Revision Lecture 1: Nodal Analysis & **Frequency Responses** Exam Nodal Analysis **Op Amps Block Diagrams** Diodes **Reactive Components** Phasors **Plotting Frequency** Responses LF and HF Asymptotes Corner frequencies (linear factors) Sketching Magnitude **Responses** (linear factors) **Filters** Resonance

□ Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.

 \Box The order of the filter is the highest power of $j\omega$ in the denominator of the frequency response.

 \Box Often use op-amps to provide a low impedance output.





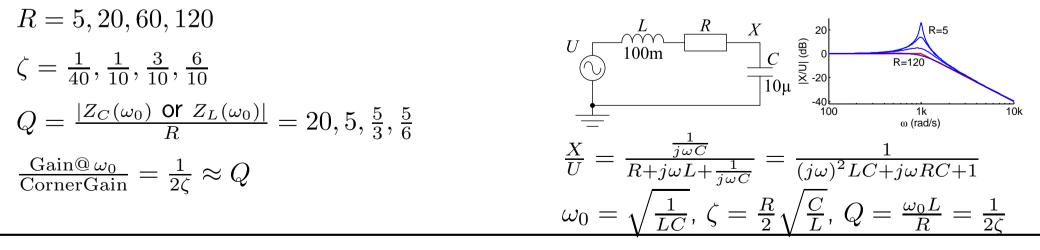
$$\frac{Y}{X} = \frac{R}{R+1/j\omega C} = \frac{j\omega RC}{j\omega RC+1} = \frac{j\omega RC}{\frac{j\omega}{a}+1}$$
$$\frac{Z}{X} = \frac{Z}{Y} \times \frac{Y}{X} = \left(1 + \frac{R_B}{R_A}\right) \times \frac{j\omega RC}{\frac{j\omega}{a}+1}$$

Resonance

• Resonant circuits have quadratic factors that cannot be factorized

•
$$H(j\omega) = a (j\omega)^2 + bj\omega + c = c \left(\left(\frac{j\omega}{\omega_0} \right)^2 + 2\zeta \left(\frac{j\omega}{\omega_0} \right) + 1 \right)$$

- Corner frequency: $\omega_0 = \sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta = \frac{b\omega_0}{2c} = \frac{b}{\sqrt{4ac}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text{Average Stored Energy}}{\text{Average Power Dissipation}} \approx \frac{1}{2\zeta} = \frac{c}{b\omega_0}$
- At $\omega = \omega_0$, outer terms cancel $(a(j\omega)^2 = -c)$: $\Rightarrow H(j\omega) = jb\omega_0 = 2jc\zeta$ $\circ |H(j\omega_0)| = 2\zeta$ times the straight line approximation at ω_0 .
 - 3 dB bandwidth of peak $\simeq 2\zeta\omega_0 \approx \frac{\omega_0}{Q}$. $\Delta \text{phase} = \pm \pi \text{ over } 2\zeta \text{ decades}$



E1.1 Analysis of Circuits (2018-10453)

Revision Lecture 1 - 14 / 14

Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors Standing Waves

Revision Lecture 2: Transients & Lines

Revision Lecture 2: Transients & Lines Transients: Basic ▷ Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors Standing Waves □ Transients happen in response to a sudden change

- Input voltage/current abruptly changes its magnitude, frequency or phase
- A switch alters the circuit

 $\hfill\square$ 1st order circuits only: one capacitor/inductor

□ All voltage/current waveforms are: Steady State + Transient

- Steady States: find with nodal analysis or transfer function
 - ▶ Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
- Transient: Always a negative exponential: $Ae^{-\frac{t}{\tau}}$
 - ▷ Time Constant: $\tau = RC$ or $\frac{L}{R}$ where R is the Thévenin resistance at the terminals of C or L
 - ▷ Find transient amplitude, A, from continuity since V_C or I_L cannot change instantly.
 - $_{\triangleright}\ \tau$ and A can also be found from the transfer function.

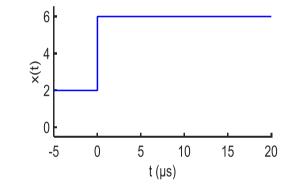
Steady States

Revision Lecture 2: Transients & Lines Transients: Basic Ideas ▷ Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors Standing Waves

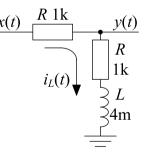
A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t < 0) and one after $(t \ge 0)$. At t = 0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$) $\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$) So L acts as a short citcuit Potential divider: $y_{SS} = \frac{1}{2}x$ $y_{SS}(0-) = 1, y_{SS}(0+) = 3$



Method 2: Transfer function $\frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ set $\omega = 0$: $\frac{Y}{X}(0) = \frac{1}{2}$ $y_{SS}(0-) = 1, y_{SS}(0+) = 3$



Sinusoidal input \Rightarrow Sinusoidal steady state \Rightarrow use phasors. Then convert phasors to time waveforms to calculate the actual output voltages $y_{SS}(0-)$ and $y_{SS}(0+)$ at t = 0. Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time ▷ Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors

Standing Waves

Method 1: Thévenin

(a) Remove the capacitor/inductor(b) Set all sources to zero (including the input voltage source). Leave output unconnected.

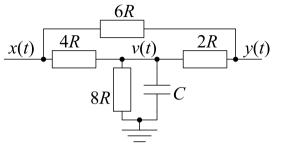
(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

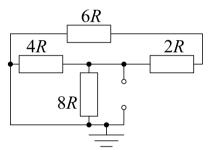
 $R_{Th} = 8R||4R||(6R + 2R) = 2R$ (d) Time constant: $= R_{Th}C$ or $\frac{L}{R_{Th}}$ $\tau = R_{Th}C = 2RC$

Method 2: Transfer function (a) Calculate transfer function using n

(a) Calculate transfer function using nodal analysis KCL @ V: V-X/4R + V/8R + jωCV + V-Y/2R = 0 KCL @ Y: Y-V/2R + Y-X/6R = 0
→ Eliminate V to get transfer Function: Y/X = 8jωRC+13/32jωRC+16
(b) Time Constant = 1/Demonstrate common function

$$\omega_d = \frac{16}{32RC} \Rightarrow \tau = \frac{1}{\omega_d} = 2RC$$



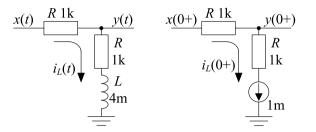


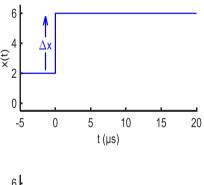
Revision Lecture 2: Transients & Lines Transients: Basic Ideas **Steady States Determining Time** Constant Determining Transient ▷ Amplitude **Transmission Lines** Basics Reflections Sinewaves and Phasors Standing Waves

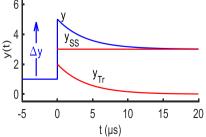
After an input change at t = 0, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity $x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$ Continuity $\Rightarrow i_L(0+) = i_L(0-)$ Replace L with a 1 mA current source y(0+) = x(0+) - iR = 6 - 1 = 5

(i) Version 2: Transfer function $H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x = x(0+) - x(0-) = +4$ $y(0+) = y(0-) + H(j\infty) \times \Delta x$ $= 1 + \Delta y = 1 + 1 \times 4 = 5$ (ii) $A = y(0+) - y_{SS}(0+) = 5 - 3 = 2$ (iii) $y(t) = y_{SS}(t) + Ae^{-t/\tau}$ $= 3 + 2e^{-t/2\mu}$



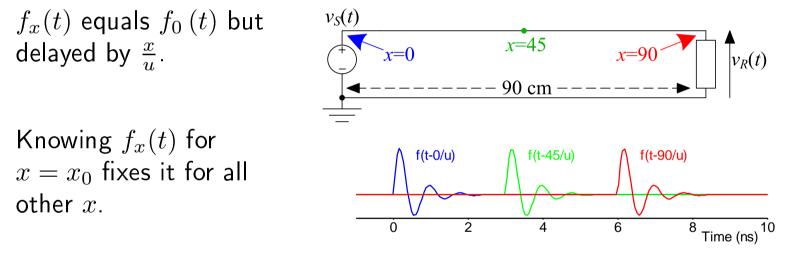




Revision Lecture 2: <u>Transients & Lines</u> Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines ▷ Basics Reflections Sinewaves and Phasors Standing Waves

Transmission Line: constant L_0 and C_0 : inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u}\right)$. Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \text{ cm/ns}$



Backward wave: $g_x(t)$ is the same but travelling $\leftarrow: g_x(t) = g_0 \left(t + \frac{x}{u}\right)$. Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x - g_x}{Z_0}$ where i_x is positive in the +x direction (\rightarrow) and $Z_0 = \sqrt{\frac{L_0}{C_0}}$

Waveforms of f_x and g_x are determined by the connections at both ends.

Reflections

Revision Lecture 2: <u>Transients & Lines</u> Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics ▷ Reflections Sinewaves and Phasors Standing Waves

$$v_{s(t)} \xrightarrow{i_{0}(t)} Z_{0}=100$$

$$R_{L}=300$$

$$v_{u}(t)$$

$$v_{v}(t)$$

$$R_{L}=300$$

$$v_{v}(t)$$

$$v_{v}(t$$

Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and ▷ Phasors

Standing Waves

Sinewaves are easier because:

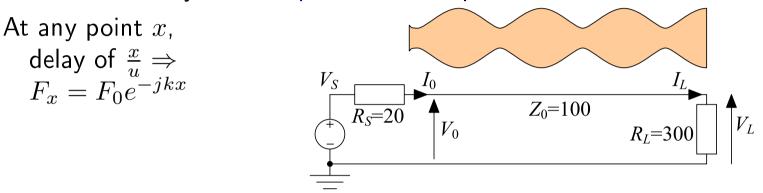
- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts: $f_x(t) = A \cos \left(\omega \left(t - \frac{x}{u} \right) + \phi \right) \Leftrightarrow F_x = A e^{j \left(\phi - \frac{\omega}{u} x \right)} = F_0 e^{-jkx}$ $k = \frac{\omega}{u} = \frac{2\pi}{\lambda} \text{ is the wavenumber: radians per metre (c.f. <math>\omega \text{ in rad/s})$

As before:
$$V_x = F_x + G_x$$
 and $I_x = \frac{F_x - G_x}{Z_0}$
 $V_S = I_0$ As before:
 $R_S = 20$ V_0 $Z_0 = 100$ V_L $G_L = \rho_L F_L$
 $F_0 = \tau_0 V_S + \rho_0 G_0$
But $G_0 = F_0 \rho_L e^{-2jkL}$ roundtrip delay of $\frac{2L}{T}$ + reflection at $x = L$

But $G_0 = F_0 \rho_L e^{-2jkL}$: roundtrip delay of $\frac{2L}{u}$ + reflection at x = L. Substituting for G_0 in source end equation: $F_0 = \tau_0 V_S + \rho_0 F_0 \rho_L e^{-2jkL}$ $\Rightarrow F_0 = \frac{\tau_0}{1 - \rho_0 \rho_L \exp(-2jkL)} V_S$ so no infinite sums needed \odot

Standing Waves

Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors ▷ Standing Waves Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$ Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right)$ Voltage Magnitude : $|V_x| = |F_0| \left|1 + \rho_L e^{-2jk(L-x)}\right|$: depends on x

If $\rho_L \ge 0$, max magnitude is $(1 + \rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = +1$ $\Rightarrow x = L$ or $x = L - \frac{\pi}{k}$ or $x = L - \frac{2\pi}{k}$ or ...

Min magnitude is $(1 - \rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = -1$ $\Rightarrow x = L - \frac{\pi}{2k}$ or $x = L - \frac{3\pi}{2k}$ or $x = L - \frac{5\pi}{2k}$ or ...