E4.40/SO20 - Information Theory

Problem Sheet 1

(Most questions are from Cover \& Thomas, the corresponding question numbers are given in brackets at the start of the question)

Notation: We use a sans-serif font for random variables: $\boldsymbol{X}, \mathbf{X}, \mathbf{X}$ are scalar, vector and matrix random variables respectively

The following expressions may be useful: $\quad \sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r} \quad \sum_{n=1}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}$

1. [2.1] A fair coin is flipped until the first head occurs. Let \boldsymbol{x} denote the number of flips required.
(a) Find the entropy $H(X)$ in bits.
(b) A random variable x is drawn according to this distribution. Find an "efficient" sequence of yes-no questions of the form "Is \boldsymbol{X} contained in the set S?". Compare $H(x)$ to the expected number of questions required to determine x.
2. $[\sim 2.2] x$ is a random variable taking integer values. What can you say about the relationship between $H(x)$ and $H(y)$ if
(a) $y=x^{2}$
(b) $y=x^{3}$
3. [2.3] If \mathbf{p} is an n-dimensional probability vector, what is the maximum and the minimum value of $H(\mathbf{p})$. Find all vectors \mathbf{p} for which $H(\mathbf{p})$ achieves its maximum or minimum value.
4. We write $H(p)$ (with a scalar p) to denote the entropy of the Bernoulli random variable with probability mass vector $\mathbf{p}=\left[\begin{array}{ll}1-p & p\end{array}\right]$. Prove the following properties of this function:
(a) $\quad H^{\prime}(p)=\log (1-p)-\log p$
(b) $\quad H^{\prime \prime}(p)=\frac{-\log e}{p(1-p)}$
(c) $\quad H(p) \geq 2 \min (p, 1-p)$
(d) $H(p) \geq 1-4(p-1 / 2)^{2}$
(e) $\quad H(p) \leq 1-2 \log e(p-1 / 2)^{2}$
5. [2.5] Let x be a discrete random variable and $g(x)$ a deterministic function of it. Show that $H(g(x)) \leq H(x)$ by justifying the following steps:

$$
\begin{aligned}
& H(x, g(x)) \stackrel{(a)}{=} H(x)+H(g(x) \mid x) \stackrel{(b)}{=} H(x) \\
& H(x, g(x)) \stackrel{(c)}{=} H(g(x))+H(x \mid g(x)) \stackrel{(d)}{\geq} H(g(x))
\end{aligned}
$$

6. [2.6] Show that if $H(y \mid x)=0$, then y is a function of x, that is for all x with $p(x)>0$, there is only one possible value of y with $p(x, y)>0$.
7. [~2.7] x_{i} is a sequence of i.i.d. Bernoulli random variables with $p\left(x_{i}=1\right)=p$ where p is unknown. We want to find a function f that converts n samples of X into a smaller number, K, of i.i.d. Bernoulli random variables, z_{i}, with $p\left(z_{i}=1\right)=1 / 2$. Thus $z_{1: K}=f\left(X_{1: n}\right)$ where K can depend on the values X_{i}.
(a) Show that the following mapping for $n=4$ satisfies the requirements and find the expected value of $K, E(K)$.

$0000,1111 \rightarrow$ ignore;	$1010 \rightarrow 0 ; \quad 0101 \rightarrow 1 ;$	$0001,0011,0111 \rightarrow 00 ;$
$0010,0110,1110 \rightarrow 01 ;$	$0100,1100,1101 \rightarrow 10 ;$	$1000,1001,1011 \rightarrow 11$

(b) Justify the steps in the following bound on $E(K)$

$$
\begin{aligned}
n H(p) & \stackrel{(a)}{=} H\left(X_{1: n}\right) \stackrel{(b)}{\geq} H\left(z_{1: K}, K\right) \stackrel{(c)}{=} H(K)+H\left(Z_{1: K} \mid K\right) \\
& \stackrel{(d)}{=} H(K)+E K \geq E K
\end{aligned}
$$

8. [2.10] Give examples of joint random variables x, y and z such that:
(a) $I(x ; y \mid z)<I(x ; y)$
(b) $\quad I(x ; y \mid z)>I(x ; y)$
9. [2.12] We can define the "mutual information" between three variables as

$$
I(x ; y ; z)=I(x ; y)-I(x ; y \mid z)
$$

(a) Prove that

$$
\begin{aligned}
I(x ; y ; z)= & H(x, y, z)-H(x, y)-H(y, z)-H(z, x) \\
& +H(x)+H(y)+H(z)
\end{aligned}
$$

(b) Give an example where $I(x, y ; z)$ is negative. This lack of positivity means that it does not have the intuitive properties of an "information" measure which is why I put "mutual information" in quotes above.
10. [2.17] Show that $\log _{e}(x) \geq 1-x^{-1}$ for $x>0$.
11. $\quad[\sim 2.16] x$ and y are correlated binary random variables with $p(x=y=0)=0$ and all other joint probabilities equal to $1 / 3$. Calculate $H(x), H(y), H(x \mid y), H(y \mid x), H(x, y), I(x, y)$.
12. [~2.22] If $x \rightarrow y \rightarrow z$ form a markov chain, and for y, the alphabet size $|\boldsymbol{y}|=k$, show that $I(X, Z) \leq \log k$. What does this tell you if $k=1$?
13. [2.29] Prove the following and find the conditions for equality:
(a) $H(x, y \mid Z) \geq H(x \mid Z)$
(b) $I(x, y, Z) \geq I(x, Z)$
(c) $H(x, y, z)-H(x, y) \leq H(x, z)-H(x)$
(d) $I(x, z \mid y) \geq I(z, y \mid x)-I(z, y)+I(x, z)$

E4.40/SO20 - Information Theory

Solution Sheet 1

1. (a) $H(x)=2$
(b) Ask if $x=1,2,3, \ldots$ in turn. Expected number of questions is 2
2. $H(x, y)=H(x)+H(y x)=H(Y)+H(x \mid y)$, but $H(y x)=0$ since Y is a function of x so $H(y)=$ $H(x)-H(x y) \leq H(x)$ with equality iff $H(x y)=0$ which is true only if x is a function of y, i.e. if y is a one-to-one function of x for every value of x with $p(x)>0$. Hence
a) $H(y) \leq H(x)$ because, for example $1^{2}=-1^{2}$
(b) $H(y)=H(x)$
3. Maximum is $\log n$ iff all elements of p are equal. Minimum is 0 iff only one element of p is non-zero; there are n possible elements that this could be.
4. (a) and (b) are straightforward calculus: easiest to convert logs to base e first. For the others, assume $1 / 2<p<1$ for covenience (other half follows by symmetry). Since $H^{\prime \prime}(p)<0, H(p)$ is concave and so lies above the straight line $2-2 p$ defined in (c).

At $p=1 / 2$ the bound in (e) has the same value and first two derivatives as $H(p)$. For $1 / 2<p<1$ its second derivative is greater than $H^{\prime \prime}(p)$ and so the bound follows.

For (d) we consider $D(p)=H(p)-1+4(p-1 / 2)^{2} . D^{\prime \prime}(p)=0$ is a quadratic in p and has only two solutions $p=1 / 2 \pm \sqrt{(2-\log e) / 8}=0.5 \pm 0.26$. Therefore $D^{\prime}(p)$ increases from 0 at $p=0.5$ to reach a maximum at $p=0.76$ and decreases thereafter. This implies that $D^{\prime}(p)=0$ has only one solution for $p>1 / 2$ and therefore that $D(p)$ has a single maximum. Since $D(1 / 2)=D(1)=0$ we must have $D(p)>0$ for $1 / 2<p<1$.
5. (a) chain rule, (b) $g(x) \mid x$ has only one possible value and hence zero entropy, (c) chain rule, (d) entropy is positive. We have equality at (d) iff $g(x)$ is a one-to-one function for every x with $p(x)>0$.
6. $H(y \mid x)=\sum p(x) H(y \mid X=x)$

All terms are non-negative so the sum is zero only if all terms are zero. For any given term this is true either if $p(x)=0$ or if $\mathrm{H}(y x=\mathrm{x})$ is zero. The second case arises only if $\mathrm{H}(y x=x)$ has only one value, i.e. y is a function of x. The first case is why we needed the qualification about $p(x)>0$ in answers 2 and 4 above.
7. (a) The probability of any given value of $X_{1: 4}$ depends on the number of 1 's and 0 's. We create four subsets with equal probabilities to generate a pair of bits and two other subsets to generate one bit only. The expected number of bits generated is

$$
E K=8 p(1-p)^{3}+10 p^{2}(1-p)^{2}+8 p^{3}(1-p)
$$

(b) (a) i.i.d entropies add, (b) functions reduce entropy, (c) chain rule, (d) z_{i} are i.i.d. with entropy of 1 bit, (e) entropy is positive.
8. (a) This is true for any Markov chain $x \rightarrow y \rightarrow z$. One possibility is $x=y=z$ all fair Bernoulli variables.
(b) An example of this was given in lectures. A slightly different example is if x and y are fair binary variables and $z=x y$. Knowing z, entangles x and y
9. (a) $\mathrm{I}(x, y, z)=\{\mathrm{H}(x)-\mathrm{H}(x y)\}-\{\mathrm{H}(x \mid z)-\mathrm{H}(x y y, z)\}=\mathrm{H}(x)-\{\mathrm{H}(x, y)-\mathrm{H}(y)\}-\{\mathrm{H}(x, z)-$ $\mathrm{H}(z)\}+\{\mathrm{H}(x, y, z)-\mathrm{H}(y, z)\}$
(b) Use the example from 7(b) above.
10. Define $f(x)=\ln (x)+x^{-1}-1$. This is continuous and differentiable in $(0, \infty)$. Differentiate twice to show that the only extremum occurs at $x=1$ and that it is a minimum. Hence $\mathrm{f}(x) \geq \mathrm{f}(1)=0$.
11. $\mathrm{H}(x)=\mathrm{H}(y)=0.918 ; \mathrm{H}(x y)=\mathrm{H}(y x)=0.667 ; \mathrm{H}(x, y)=1.58 ; \mathrm{I}(x, y)=0.252$.
12. The data processing inequality says that $\mathrm{I}(x, z) \leq \mathrm{I}(x, y)=\mathrm{H}(y)-\mathrm{H}(y x) \leq \mathrm{H}(y) \leq \log \mathrm{k}$ where the last inequality is the uniform bound on entropy. If $k=1$ then $\log k=0$ and so x and z must be independent.
13. (a) $\mathrm{H}(x, y z)=\mathrm{H}(x \mid z)+\mathrm{H}(y x, z) \geq \mathrm{H}(x \mid z)$ with equality if y is a function of x and z.
(b) $\mathrm{I}(x, y, z)=\mathrm{I}(x, z)+\mathrm{I}(y, z x) \geq \mathrm{I}(x, z)$ with equality if y and z are conditionally independent given x.
(c) $\mathrm{H}(x, y, z)-\mathrm{H}(x, y)=\mathrm{H}(\nexists x, y)=\mathrm{H}(\Delta x)-\mathrm{I}(y, z x) \leq \mathrm{H}(\nexists x)=\mathrm{H}(x, z)-\mathrm{H}(x)$ with equality if y and z are conditionally independent given X.
(d) $\mathrm{I}(x, y, z)=\mathrm{I}(y, z)+\mathrm{I}(x, z y)=\mathrm{I}(x, z)+\mathrm{I}(y, z x)$. Rearrange this to give the inequality which is in fact always an equality (trick question).

