Matrix Reference Manual

Go to: Introduction, Notation, Index

R.1 Anderson, T. W., "An Introduction to Multivariate Statistical Analysis", Wiley, 1958
R.2 Barnett, S. and Storey, C., "Matrix Methods in Stability Theory", Nelson, 1970
R.3 Ben-Israel, A. and Greville, T.N.E., "Generalized Inverses", Wiley1974
R.4 Brandwood, D.H., "A complex gradient operator and its application in adaptive array theory", IEE Proc, Vol 130, Parts F and H, No 1, pp 11-16, Feb 1983
R.5 Burkardt, J., "Linear Algebra Glossary",, 2004.
R.6 Fackler, P.L., "Notes on Matrix Calculus",, Apr 2005
R.7 Golub, G.H. and Van Loan, C.F., "Matrix Computations", John Hopkins University Press, 1983 ISBN 0-946536-00-7/05-8

Halmos, P.R., "Finite Dimensional Vector Spaces", D Van Nostrand, 1958

R.9 Haykin, S., "Adaptive Filter Theory", Appendix,  Prentice-Hall, 1991
R.10 Horn, R. A.  & Johnson, C. R., "Matrix Analysis", CUP, 1990, ISBN 0521305861
R.11 Horn, R. A.  & Johnson, C. R., "Topics in Matrix Analysis", CUP, 1994, ISBN 052130587X
R.12 Marcus, M.  and Minc, H., "A Survey of Matrix Theory and Matrix Inequalities", Prindle, Weber & Schmidt, 1964 / Dover, 1992
R.13 Noble, B. and Daniel, J.W., "Applied Linear Algebra", Prentice-Hall, 1988
R.14 Petersen, K. B., "The Matrix Cookbook",, 2005
R.15 Weisstein, E., "Mathworld",
R.16 Miller, K. S., "Complex Stochastic Processes: An Introduction to Theory and Application", Addison-Wesley, 1974

This page is part of The Matrix Reference Manual. Copyright © 1998-2022 Mike Brookes, Imperial College, London, UK. See the file gfl.html for copying instructions. Please send any comments or suggestions to "mike.brookes" at "".
Updated: $Id: proof950.html 11291 2021-01-05 18:26:10Z dmb $