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ABSTRACT

One of the challenges for single-channel speech enhancement
is to estimate the noise statistics from a signal containing both
speech and noise. In this paper, we present a technique for
eigendomain-based noise estimation that uses minimum statis-
tics to control the adaptation rate along each eigenvector. We
demonstrate that this technique gives robust noise tracking for
non-stationary noise.

1. INTRODUCTION

Single-channel speech enhancement algorithms require an
accurate estimate of the noise statistics. This estimate
must be obtained from a signal containing both the speech
and the noise, assumed to be additive and uncorrelated
with the speech. One approach is to employ a Voice Activ-
ity Detector (VAD) and to estimate the noise statistics dur-
ing periods of speech absence. Alternatively, continuous
noise update schemes, normally using minimum statistics
(MS) and/or recursive averaging (RA), can be used to up-
date the noise estimates even in the presence of speech. In
this paper, we present a continuous update method which
operates in the eigendomain. We show that our algorithm
can track rapidly changing noise.
An estimation technique introduced by Martin [1], [2], [3]
consists of finding the minimum of smoothed noisy-signal
power spectral estimates for each frequency bin over a
window of D frames. This method assumes that, over a
sufficiently long window, the smoothed estimate will con-
tain troughs that correspond to the noise energy. For an ac-
curate noise estimate, the window length for the minimum
value search,D, needs to be long enough to bridge any pe-
riods of speech activity. A conflicting desirable property
is to have a short window so that the minimum estimate
can track changes in the noise statistics and to give low la-
tency. The author uses a window length between 0.5 and
1.5 seconds in his implementation.
Doblinger [4] uses RA to track the minimum value us-
ing a computationally more efficient scheme. However,
the learning rate for his algorithm has to be low because
there is no way to distinguish between a rise in the noise
level and the onset of speech. Consequently, his method

suffers from a slow update of the noise statistics. Cohen
and Berdugo [5], [6] combine the MS and RA approaches
thereby benefiting from their strengths without their draw-
backs. The minimum estimate is used to derive the proba-
bility of speech presence in each frequency bin. The noise
estimate is updated using the recursive averaging equation
with the learning rate determined by the estimated prob-
ability of speech presence. The combined technique has
the simplicity and efficiency of RA with the robustness of
the MS method. Since the minimum estimates are only
used indirectly, their precision is not critical.

2. EIGENDOMAIN-BASED SPEECH PRESENCE
PROBABILITY USING MINIMUM STATISTICS

Eigendomain speech enhancement [7] consists of identi-
fying the speech subspace and projecting the speech onto
it before estimating the speech energy. In a previous pa-
per [8], we proposed a continuous noise update scheme in
the eigendomain which exploits the persistence of noise
energy bands in the noisy signal. The eigendomain is
particularly suited for noise estimation because it gives a
sparse representation for speech signals so that the noise
can be estimated from the subspace complementary to that
of the speech.

For additive uncorrelated noise, the covariance matrices
of the clean speech,Ry, and of the noise,Rw, add up
to give the noisy speech covariance matrix,Rz ∈ RK×K

with eigendecomposition:

Rz = Ry + Rw = VΛVT (1)

whereλk with k ∈ [1,K] are the diagonal elements ofΛ
andRz is calculated for framen as in [9]. Our aim is to es-
timateRw using a continuous noise estimation technique.
We modify the frequency-based minimum finding algo-
rithm in [5] to operate in the eigendomain and propose a
probability model for the presence of speech energy along
each eigenvector.
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2.1. Minimum values in the eigendomain

In this section, we present an eigendomain-based min-
imun estimator and investigate the probability distribution
for the minimum values. We propose the following recur-
sive equation for finding the minimum along each eigen-
vector instead of each frequency bin [5]; the diagonal el-
ements ofL(n), lk,k(n), are the minimum energy values
along the corresponding eigenvector.

L(n) = B(n)L(n− 1)B(n)T (2)

whereB(n) = M(n)V(n)T V(n− 1) andM(n) is diag-
onal with elements

mk,k(n) = min
(√

λk(n)/lk,k(n− 1), 1
)

(3)

It is possible to reason about (2) by first assuming that
V(n) = V(n− 1) giving the minimum finding step as

L(n) = M(n)L(n− 1)M(n)T (4)

or equivalentlylk,k(n) = m2
k,klk,k(n − 1). The formu-

lation in (2) is a generalization of (4) for the case where
V(n) 6= V(n− 1).
We obtain the ratio of thekth eigenvalue to the minimum
energy along the corresponding eigenvector,lk,k(n), as

ρk(n) = λk(n)/lk,k(n) (5)

which is the eigendomain-based equivalent for the ratio
in [5]. To analyse the distribution of theρ values (5) for
speech and noise, we denote byHy the hypothesis that
the speech energy associated with an eigenvector,λyk

, ex-
ceeds that for noise,λwk

, andHw for the converse, i.e.

Hy : λyk
> λwk

Hw : λyk
≤ λwk

(6)

We label asHy or Hw the eigenvectors in all frames of
four noisy speech instances obtained by adding noise in-
stances from the NOISEX database [10] to 4 speech ex-
tracts for a global input SNR of 5dB in each case. For
each eigenvector of each frame, we also calculate the val-
ues ofρ as in (5). We plot in Figure 1 the histogram of
the log10(ρ) values corresponding to the eigenvectors la-
belledHy (yellow) and do the same for those labelledHw

(red), with the region of overlap appearing as orange.
Even though the noise instances used are different, theρ
values forHw are clustered at the low end, typically be-
low 10. In [5], a hard threshold is applied to decide be-
tween the two hypotheses. A possible problem with this
approach is the degree of overlap in the distribution of the
ρ values forHy andHw. In particular, this problem shows
up as the input SNR decreases. This is illustrated by plot-
ting in Figure 2 the distribution curves for a speech extract
corrupted with white noise at four different input SNR val-
ues. As the input SNR decreases from 5dB to -10dB, the

Figure 1: Histogram oflog10(ρ) values for speech extracts
corrupted with 4 different noise types at 5dB input SNR.

distribution forHw values (red) remains constant. How-
ever, theρ values forHy (yellow) shift to the left so that
the degree of overlap is more pronounced. This is because
the minimum energy values used to calculate the values
of ρ increase as the input SNR decreases. In these cir-
cumstances, a hard threshold leads to a high error rate in
the classification of eigenvectors and a probability-based
framework gives greater robustness.

Figure 2: Histogram oflog10(ρ) values for a speech extract
corrupted with white noise at different input SNR values.

2.2. Probability model

In this section we develop a probability model for the pres-
ence of speech energy along an eigenvector,P (Hy|ρ). We
use Bayes theorem to obtain an estimate of the conditional
probability values,P (Hy|ρ), from the likelihood values,
P (ρ|Hy) andP (ρ|Hw), in the previous section.

P (Hy|ρ) =
P (ρ|Hy)

P (ρ|Hy) + P (ρ|Hw)P (Hw)/P (Hy)
(7)
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For the case of equal prior probabilities, i.e.P (Hw)/P (Hy)
=1, we plot in Figure 3(a) the conditional probability curves
for the noisy speech extracts used in the previous section.
An interesting feature of all the curves is the almost lin-
ear dependence of the probability values on thelog10(ρ)
values in the range 0 to about 1.3. We also plot in Fig-
ure 3(b) the conditional probability curves for the noisy
speech extract from the previous section at different input
SNR values. The noteworthy feature, forlog10(ρ) val-
ues below 1.3, is the higher values ofP (Hy|ρ) for a fixed
value ofρ as the input SNR decreases, for example for
curve (d) compared to curve (a). This reflects the increase
in the overlap of the distribution curves for theρ values as
mentioned in the previous section (Figure 2).
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Figure 3: Conditional probability curves for noisy speech ex-
tracts in (a) Figure 1 and (b) Figure 2.

We model the conditional probability curves in Figure 3(a)
as a straight line whose slope depends onP (Hw)/P (Hy)
for 0 < log10(ρ) < 1.3. To estimateP (Hw)/P (Hy),
we exploit one of the general properties of speech energy
in the eigenspectrum, namely that the eigenvalues asso-
ciated with speech typically cluster together among the
highest eigenvalues. Consequently, theρ values in (5) are
normally high for adjacent eigenvectors with associated
speech energy. If we apply a fixed threshold,τ = 1.3, to
some adjacentρ values in a frame, the fraction,rk(n), of
those that exceed the threshold is given by

rk(n) =
1
|W |

∑

i∈W

(ρk−i(n) > τ) (8)

whereW defines the adjacent eigenvectors and|W | is the
number of such eigenvectors, e.g.W = {−3, . . . , 3} and
|W | = 7. rk(n) is an estimate of the proportion of eigen-
vectors with labelHy in that vicinity and can be used to
estimateP (Hw)/P (Hy). For example, if the value ofρ
for an eigenvector is low but those for adjacent eigenvec-
tors in the same frame are high, the ratio of prior proba-
bilities is skewed more towardsHy thanHw.
The ratio of prior probability values for an eigenvector of
a frame is estimated as

log4(P (Hw)/P (Hy)) = 1− 2r (9)

where the frame index and eigenvector rank have been
omitted for clarity. With (9),P (Hw)/P (Hy) is estimated

as 4 forr = 0 and1/4 for r = 1, with the limits 4 and
1/4 chosen to account for possible errors in classification.
Forr = 0.5, the ratio is 1 as required, i.e.Hy andHw are
equally likely.

3. RESULTS

With the probability estimate from the previous section,
we use an adaptive noise update scheme to estimateRw(n).

R̂w(n) = V(n)
(
A(n)Λ(n)

w (n− 1)A(n)

+Ac(n)Λ(n)Ac(n)
)
V(n)T

Λ(n)
w (n− 1) = V(n)T R̂w(n− 1)V(n)

A(n) = diag(a1(n), . . . , aK(n))
ak(n) =

√
α + (1− α)pk(n)

Ac(n) = (I−A(n)A(n))1/2

(10)
whereα, set at 0.8 in our implementation, controls the
smoothing applied. This formulation is the eigendomain
version of the frequency-based one in [5] and guarantees
a positive semi-definitêRw(n). The enhancement then
proceeds as in [7]. For comparison, we also enhance the
speech using an estimate of the noise statistics using an
implementation [11] of Martin’s MS approach [1]. The
metric for comparison between the two techniques is the
difference in segmental SNR for the enhanced speech us-
ing the proposed technique instead of Martin’s MS, calcu-
lated over frames containing speech only.
We first assess the performance of the two approaches for
different window lengths for the minimum search. In his
paper, Martin [1] suggests a window length between 0.5s
and 1.5s. The difference in segmental SNR values for dif-
ferent speech and noise combinations is calculated for dif-
ferent window lengths for the minimum search. The re-
sults, shown in Figure 4, indicate that for a window length
of 0.8s the proposed algorithm typically performs slightly
better than Martin’s since the segmental SNR improve-
ment for the proposed approach generally exceeds his. As
the window length decreases, Martin’s technique suffers
more than the proposed one and the difference in segmen-
tal SNR increases. This is because his minimum energy
estimates and hence the noise energy values may be over-
estimated for very short window lengths which results in
excessive attenuation of the speech energy. Even with a
window length as short as 0.16s, the proposed method
copes well because of the robustness of the proposed prob-
ability model and because the minimum estimate is not
directly used for signal/noise estimation.
A more challenging test consists of estimating the noise
statistics for noise that varies rapidly with time. We con-
catenate 1s extracts from the following noise instances in
the NOISEX database [10]: phantom aircraft noise, white
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Figure 4: Difference in segmental SNR improvement between
proposed approach and Martin’s for different window lengths
applied to the noisy speech extracts for Figure 1.

noise, speech-like noise and lynx helicopter noise. We
corrupt a speech extract with the resulting noise samples
for an input SNR of 5dB with the noisy speech spectro-
gram shown in Figure 5(a). The spectrogram for the en-
hanced speech from the proposed approach and Martin’s
for a window length of 0.25s are shown in Figures 5(b)
and (d). The segmental SNR plot in Figure 5(c) shows
that for strong speech regions (corresponding to dark ar-
eas in the spectrograms), the segmental SNR for the pro-
posed approach (solid line) is generally higher leading to
a lower distortion to speech.
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Figure 5: Spectrogram of (a) noisy speech, (b) noisy speech
enhanced using proposed approach and (d) noisy speech
enhanced using an implementation [11] of Martin’s tech-
nique [1]. (c) shows the segmental SNR of the enhanced
speech for the proposed (solid) and Martin’s (dashed) meth-
ods

4. CONCLUSION

In this paper, we propose an eigendomain-based probabil-
ity model for speech presence in each eigenvector which
leads to robust noise tracking even in the presence of speech

in a frame. Tests with real noise indicate that the win-
dow for the minimum search can be made quite small
without greatly affecting the performance. The proposed
technique can thus estimate the noise statistics without ex-
cessive speech distortion even when the noise is changing
rapidly.
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