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ABSTRACT

Selective tap algorithms have been proposed as a means of reduc-
ing complexity for adaptive filtering. MMax tap selection has been
employed in many algorithms due to its straightforward implemen-
tation. This paper formulates the analysis of two MMax-based algo-
rithms under time-varying unknown system conditions as are often
found in practical applications. The steady-state misalignment for
the MMax normalized least mean square and the MMax recursive
least squares algorithms are derived and their performance is com-
pared to that of their respective full-update algorithms. The tradeoff
between computational complexity and misalignment performance
is also shown for the MMax normalized least mean square case.

Index Terms— Acoustic echo cancellation, Partial update adap-
tive filtering, Misalignment performance

1. INTRODUCTION

Adaptive filters are widely used in many applications of signal pro-
cessing. The normalized least-mean-square (NLMS) algorithm [1]
is common in practice due to its straightforward implementation and
relatively low complexity. The recursive least squares (RLS) is bet-
ter performing but requires substantially more computation. The
demands made of adaptive filters by the deployment of new tech-
nologies call for ever-increasing performance, modelling of longer
impulse responses and lower computational complexity for system
identification applications such as acoustic echo cancellation (AEC)
as shown in Fig1.

A result of efforts to reduce the complexity of adaptive algo-
rithms is a class of selective tap adaptive algorithms that share the
characteristic of executing tap update operations on only a subset of
the filter coefficients at each iteration. This can be achieved by se-
lecting the taps using one of several criteria. Examples include dec-
imation in the space of the tap-update vector such as in Sequential-
LMS [2], temporal decimation such as in Periodic-LMS [2], impo-
sition of a sparse approximation to the tap-update vector such as
in MMax normalized least-mean-square (MMax-NLMS) [3], MMax
recursive least squares (MMax-RLS) [4] and Selective Partial-update
algorithms [5] that can be built around both NLMS and the affine
projection algorithm [6]. Although partial-update algorithms were
originally proposed to address computational complexity issues as
has been discussed, a class of selective-tap algorithms have also been
applied to stereophonic AEC [4][7] giving improved performance.

Important performance measures for adaptive filters character-
ize the initial convergence rate, the residual error after convergence,
the ability to track time-varying systems and the computational com-
plexity. This paper focuses on the steady-state misalignment perfor-
mance of MMax-NLMS and MMax-RLS algorithms when tracking
non-stationary systems. Consideration of algorithms’ performance
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Fig. 1. System identification structure.

under such dynamic conditions is important since the unknown sys-
tem is often non-stationary in practical applications. It is therefore
necessary to include a time-varying system model in the analysis
of such adaptive algorithms as indicated in several studies includ-
ing [8][9]. Although performance in terms of mean square error
has been analyzed for the MMax-NLMS algorithm [3], this consid-
ered only stationary systems. Our new analysis describes the perfor-
mance of a generalized class of adaptive algorithms, including both
fully updating and selective tap updating for non-stationary unknown
systems. This work considers the trade-off between computational
complexity and misalignment under such non-stationary unknown
system conditions.

2. THE MMAX-NLMS AND MMAX-RLS ALGORITHMS

In this section, we review the MMax-NLMS and MMax-RLS al-
gorithms. Figure 1 shows a system identification structure in
which, at the nth iteration, yn = xTnhn and the tap-input vec-
tor xn = [xn(0), . . . , xn(L − 1)]T while the unknown system,
hn = [hn(0), . . . , hn(L − 1)]T and L is the length of hn. An

adaptive filter bhn = [bhn(0), . . . ,bhn(L − 1)]T is used to estimate
hn by adaptively minimizing the error signal en = yn + wn − ŷn,

where the byn = xTn bhn and wn is measurement noise.

2.1. The MMax-NLMS algorithm

In the MMax-NLMS algorithm [10], only those taps correspond-
ing to the M largest magnitude tap-inputs are selected for updat-
ing at each iteration. Defining the subselected tap-input vector
exn = Qnxn where Qn = diag{qn} is a L × L tap selec-

tion matrix and qn = [qn(0), . . . , qn(L − 1)]T , elements qn(i)
for i = 0, 1, . . . , L− 1 is given by,

qn(i) =

j
1 |xn(i)| ∈ {M maxima of |xn|}
0 otherwise

, (1)

where |xn| =
ˆ|xn(0)|, . . . , |xn(L − 1)|˜T . Defining ‖.‖22 as the

squared l2-norm, the MMax-NLMS tap-update equation is then
given by bhn+1 = bhn + μ

Qnxnen

‖xn‖2
2 + δ

, (2)
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where δ and μ are the regularization parameter and step-size respec-
tively. To select the M maxima of |xn|, MMax-NLMS employs
the SORTLINE algorithm [11]. The computational complexity in
terms of multiplications and sorting operations for MMax-NLMS is
O(L +M + 2 log2 L) compared to O(2L) for NLMS. Further re-
duction in sorting operations can be achieved using the Short-sort
algorithm [12].

2.2. The MMax-RLS algorithm

The MMax-RLS algorithm [4] sub-samples the tap-input vectors at
each time iteration based on the MMax tap selection criterion given
in (1) where the subselected tap-input vectors propagate consistently
through the memory of the RLS algorithm. Defining exn = Qnxn,
the MMax-RLS tap-update equation is given by

bhn+1 = bhn + eknen , (3)

where eRn =
Pn

j=1 λ
n−jexjexTj and the modified Kalman gain is

ekn = eR−1
n exn =

λ−1 eR−1
n−1exn

1 + λ−1exTn eR−1
n−1exn , (4)

and using the matrix inversion lemma [1], eR−1
n = λ−1[eR−1

n−1 −eknexTn eR−1
n−1]. Although MMax-RLS updates all taps, complexity

is reduced by the sparseness of exn. The complexity in terms of
multiplication and sorting operations for the MMax-RLS algorithm
is O(L2 +M + 2 log2 L) compared to O(4L2) for RLS.

3. ANALYSIS OF THE MISALIGNMENT

We consider adaptive algorithms of the form

bhn+1 = bhn + Γnxnen , (5)

where Γn = 2μQn/(‖xn‖22 + δ) and Γn = eR−1
n Qn are the L×L

control matrices for MMax-NLMS and MMax-RLS respectively.

3.1. Non-stationary system model

A modified first-order Markov model [13][14] is employed to repre-
sent a time-varying unknown system

hn+1 = ξhn +
p
1− ξ2sn (6)

where sn = [sn(0), . . . , sn(L − 1)]T has a normal distribution
N (0, σ2

s) and σ
2
s is the variance of sn. As shown in [13], this model

has the key features that (i) the parameter 0 � ξ < 1 controls
the relative contributions to the instantaneous values of the coeffi-
cients of ‘system memory’ (the term ξhn) and ‘innovations’ (the

term
p
1− ξ2sn), (ii) the average power of the coefficients is inde-

pendent of ξ. It is shown in [13] that the system variation, which
notionally indicates the difficulty of tracking by an adaptive filter,
is a monotonic decreasing function of ξ. It has been found experi-
mentally, that ξ = 0.9999 is approximately equivalent to a source
moving at 0.2 ms−1 for acoustic impulse responses hn generated
using the method of images [15].

Defining E{·} as the expectation operator, we first assume
E{hn} = 0, E{wn} = 0 and that hn and wn are independent

1.

The dimension of bhn has been chosen to match the dimension of
1If E{hn} �= 0, a bias will be induced in the variance of hn by an

amount proportional to the square value of E{hn}.

hn. We then define the misalignment vn = bhn − hn which results
in the error signal given by en = wn − xTnvn . Hence, we obtain

vn+1=bhn+1 − hn+1 (7)

=vn + (1 − ξ)hn + Γnxnwn −
p

1 − ξ2sn − Γnxnx
T
nvn ,

Rv,n+1=E{vn+1v
T
n+1}

=Rv,n + 2(1 − ξ)σ2
sI+ σ2

wE
˘
Γnxnx

T
nΓTn

¯
−Rv,nE

˘
Γnxnx

T
n

¯− Rv,nE
˘
xnx

T
nΓTn

¯
+E

˘
Γnxnx

T
nvnv

T
nxnx

T
nΓTn

¯
(8)

where I is the identity matrix and

E{wn−iwn−j} =

j
σ2
w i = j

0 otherwise
,

E
˘
vnv

T
nxnx

T
nΓTn

¯
= Rv,nE

˘
xnxnΓ

T
n

¯
and, from the definition of the first-order Markov model in (6),
E{hnhTn} = E{snsTn} = σ2

sI. Following the approach adopted
in [1], we assume that the time variations of hn are sufficiently slow
that the adaptive filter is able to track the unknown system to within
a time lag, and that after convergence, vn is wide-sense stationary
∀ n so that E{vn+1v

T
n+1} ≈ E{vnvTn} = Rv,n. We define Rv

as the autocorrelation matrix of the mean weight error vector which
is approximately time-invariant under these assumptions. Defining
the normalized misalignment as

η =
‚‚hn − bhn

‚‚2

2

‹‖hn‖22 = η′‹‖hn‖22 , (9)

the steady-state misalignment can then be expressed as η′ =
tr{Rv} where tr{·} is the trace operator.

3.2. Misalignment analysis of MMax-NLMS

For misalignment, we consider (8) and evaluate E{ΓnxnxTn}. We
note that elements qn(i), i = 1, . . . , L, are not independent of xn(i)
since only theM largest |xn(i)| are selected. TheM selected sam-
ples are assumed to have zero mean and exploiting the mean er-

godic theorem [1], the variance of exn is eσ2
x = L−1 PL−1

i=0 ex2
n(i).

Assuming that xnx
T
n is diagonal and using E{μn} = c, a scalar

constant, we can evaluate E
˘
Γnxnx

T
n

¯
= E

˘
xnx

T
nΓ

T
n

¯
=

E{μn}E
˘
Qnxnx

T
n

¯
= M

L
ceσ2

xI. We can proceed to evaluate

tr{Rv,n} using
tr
n
E
˘
Γnxnx

T
nvnv

T
nxnx

T
nΓTn

¯o
= tr

n
c2E

˘
Qnxnx

T
nvnv

T
nxnx

T
n

¯o
= c2tr{Rv,n}(L + 2)

M

L
eσ2
xσ

2
x ,

tr
n
E
˘
Γnxnx

T
nΓTn

¯o
= tr

nM

L
c2eσ2

xI
o

=
M

L
c2eσ2

xL . (10)

Substituting (10) into (8), we obtain

tr{Rv,n+1} = tr{Rv,n}
»
1 − 2

M

L
ceσ2
x + (L + 2)

M

L
c2eσ2

xσ
2
x

–
+Mc2eσ2

xσ
2
w + 2(1 − ξ)Lσ2

s . (11)

The misalignment for MMax-NLMS can be found using the re-

lation E{vn+1v
T
n+1} ≈ E{vnvn} = Rv,n and c = 2μ/(Lσ2

x)
hence giving the steady-state misalignment as

η′
MMax−NLMS =

μσ2
w

σ2
xφ

+
Lσ2

xeσ2
xM

(1 − ξ)L2σ2
s

2μφ
, (12)

where the term φ = 1 − cσ2
x(1 + 0.5L). Adopting the terminol-

ogy of [9], the first term corresponds to the estimation variance
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Fig. 2. Variation of ψ withM for L = 128.

and is dependent on measurement noise wn while the second term
corresponds to the lag variance and is due to system time varia-
tion ξ. We note that an additional factor of Lσ2

x/(eσ2
xM) arises in

the lag variance for MMax-NLMS compared2 to NLMS. To quan-
tify the closeness of tap selection to that of a full tap-input vec-
tor in an MMax sense, we employ the M-ratio [7] given byM =
‖Qnxn‖22/‖xn‖22 = eσ2

x/σ
2
x. As shown in [7],M exhibits only a

modest reduction for 0.5L ≤M < L and hence a graceful reduction
in convergence rate is expected over this range ofM as compared to
fully updated NLMS. The steady-state misalignment due to tap se-
lectionM is apparent by noting from (12) that, under a time-varying
unknown system condition ξ < 1, the lag variance is proportional to

ψ = Lσ2
x/(eσ2

xM) = L/(MM) . (13)

Figure 2, shows the variation of ψ with the number of selected taps
M for an example case of L = 128 using a zero mean, unit vari-
ance white Gaussian noise (WGN) input sequence. We note that
for M = L, ψ = 1 since eσ2

x = σ2
x and M = 1. More im-

portantly, ψ increases smoothly with reducingM within the region
0.5L ≤ M < L and hence, for this range of M , we would ex-
pect only a graceful degradation in steady-state misalignment perfor-
mance for time-varying case ξ < 1. This is consistent with results
shown in [4] for a stationary system when ξ = 1.

3.3. Misalignment analysis of MMax-RLS

Using (3) and (4), the tap update equation for the MMax-RLS algo-
rithm can be expressed as

bhn+1 = bhn + eR−1
n Qnxnen . (14)

where Γn = eR−1
n Qn in (5) and eRn =

Pn
j=1 λ

n−jQjxjx
T
j Q

T
j .

For n→∞,

E
n

lim
n→∞

eRn

o
= E

n
lim
n→∞(λn−1ex1exT1 + . . . + exnexTn )

o

=
1

1 − λ

Meσ2
x

L
I , (15)

and hence Γn = (1 − λ)(L/(Meσ2
x))Qn. We may express the fol-

lowing terms in (8) as

E
˘
Γnxnx

T
n

¯
= E

˘
xnx

T
nΓTn

¯
= (1 − λ)

L

Meσ2
x

E
˘
Qnxnx

T
n

¯
= (1 − λ)I , (16)

2The steady-state misalignment for NLMS can be found by lettingM =
L and eσ2

x = σ2
x.

E
˘
Γnxnx

T
nvnv

T
nxnx

T
nΓTn

¯
=

»
(1 − λ)L

Meσ2
x

–2
×

E
˘
Qnxnx

T
nxnx

T
nQn

¯
Rv,n

=
(1 − λ)2L(L + 2)σ2

x

Meσ2
x

Rv,n ,

E
˘
Γnxnx

T
nΓTn

¯
=

»
(1 − λ)L

Meσ2
x

–2
E
˘
Qnxnx

T
nQn

¯
=

(1 − λ)2L

Meσ2
x

I . (17)

Using the same approach as (11), by substituting the set of equations
in (17) into (8),

Rv,n+1 =Rv,n − 2(1 − λ)Rv,n +
(1 − λ)2L

Meσ2
x

σ2
wI

+
(1 − λ)2L(L + 2)σ2

x

Meσ2
x

Rv,n + 2(1 − ξ)σ2
sI . (18)

As before, for n → ∞, Rv,n+1 ≈ Rv,n = Rv. Defining η
′ =

tr{Rv} we may then express (18) as

η′
MMax−RLS =

(1 − λ)L2σ2
w

β
+

2L(1 − ξ)σ2
sMeσ2

x

(1 − λ)β
, (19)

where β = Lσ2
x

ˆ
2ψ−1−(1−λ)(L+2)˜ while ψ is defined in (13).

ForM = L and eσ2
x = σ2

x, η
′
MMax−RLS is equivalent to the steady-

state misalignment performance of RLS. More importantly, the es-
timation variance for MMax-RLS is dependent on M . As can be
seen, β is a decreasing function of ψ and hence for a time-invariant
system with ξ = 1, the steady-state misalignment η′

MMax−RLS is a
decreasing function ofM . This is contrary to theMMax-NLMS case
as shown in (12) where the steady-state normalized misalignment is
independent ofM for time-invariant systems.

4. SIMULATION RESULTS

We present simulation results to support the analysis of our deriva-
tions and compare the performances of MMax-NLMS and MMax-
RLS to that of NLMS and RLS under time-varying system condi-
tions. Employing misalignment η as defined in (9), Figure 3 shows
MMax-NLMS results for a time-invariant (ξ = 1) and three time-
varying systems (ξ = 0.999999, 0.99999, 0.9999) where smaller
values of ξ indicate higher degrees of time-variation. An adaptive fil-
ter of lengthL = 1024 is used withM = 128 and a step-size of μ =
0.7. An additive white Gaussian noise (WGN) wn is added to yn to
achieve an SNR of 30 dB. The learning curves are averaged over 3
trials and the theoretical misalignment values of ηMMax−NLMS given
by (9) and (12) are plotted as horizontal solid lines. Theoretical mis-
alignment values of ηNLMS are plotted as dashed lines for compari-
son. The results show that for both NLMS and MMax-NLMS, their
misalignment performance degrades with reducing ξ. The MMax-
NLMS algorithm perform around 3 to 4 dB worse, in terms of
steady-state normalized misalignment, than NLMS for ξ < 1. For
a time-invariant system, ξ = 1, ηMMax−NLMS = ηNLMS since
from (12), their estimation variances are equivalent.

Figure 4 shows MMax-RLS results for the same unknown sys-
tem conditions. The adaptive filter is of length L = 1024 with
M = 128 while the forgetting factor is λ = 1 − 1/(3L) and the
SNR is 30 dB. The theoretical misalignment values of ηMMax−RLS

given by (9) and (19) are plotted as straight horizontal solid lines.
In addition, the theoretical misalignment values of ηRLS computed
usingM = L are plotted as dashed lines for comparison. As before,
we note that for both RLS and MMax-RLS, their misalignment per-
formance degrades with increasing deviation of ξ from unity. Unlike
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Fig. 3. Theoretical normalized misalignment for NLMS (dashed) and
MMax-NLMS (solid) [L = 1024,M = 128, μ = 0.7,SNR = 30 dB].
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Fig. 4. Theoretical normalized misalignment for RLS (dashed) and MMax-
RLS (solid) [L = 1024,M = 128, λ = 1 − 1/(3L),SNR = 30 dB].

the case of MMax-NLMS, there is a degradation in misalignment
performance of ∼ 5 dB for MMax-RLS compared to RLS even for
a time-invariant system ξ = 1.

Fig. 5 shows the tradeoff between complexity reduction and
degradation in misalignment performance for MMax-NLMS in a
time-varying system condition of ξ = 0.999999 over a range of
L/8 ≤ M ≤ L for L = 1024. The theoretical and experimental
steady-state misalignment is plotted against the number of multi-
plications assuming the sorting complexity is 2 log2 L = 20 as in
the SORTLINE algorithm [11]. The experimental curves are con-
sistent with the theoretical results to within about 0.5 dB for this
time-varying case of unknown system.

5. CONCLUSION

We have presented an analytical framework to compare the perfor-
mance of MMax-NLMS and MMax-RLS with NLMS and RLS re-
spectively under time-varying unknown system conditions. Insights
into the performance of MMax-NLMS and MMax-RLS is provided
through this mathematical analysis. It is shown that under time-
invariant system conditions, the MMax-NLMS has the same steady-
state normalized misalignment as NLMS. Under time-varying sys-
tem conditions, degradation in misalignment performance is found
and quantified. The performance in steady-state misalignment for
MMax-RLS is degraded compared to RLS even under time-invariant
system conditions. The tradeoff between computational complexity
and normalized misalignment indicates theMMax tap-selection does
not degrade convergence significantly forM = L/2 even for a time-
varying unknown system whereas M = L/8 costs an additional 2
to 2.5 dB in misalignment whilst saving a further 43% of the multi-
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Fig. 5. Tradeoff between complexity and normalized misalignment for L =
1024, ξ = 0.999999, SNR = 30 dB.

plications. Our new analysis results are verified by simulations.
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