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ABSTRACT

Selective tap algorithms have been proposed as a means of reduc-
ing complexity for adaptive filtering. MMax tap selection has been
employed in many algorithms due to its straightforward implemen-
tation. This paper formulates the analysis of two MMax-based algo-
rithms under time-varying unknown system conditions as are often
found in practical applications. The steady-state misalignment for
the MMax normalized least mean square and the MMax recursive
least squares algorithms are derived and their performance is com-
pared to that of their respective full-update algorithms. The tradeoff
between computational complexity and misalignment performance
is also shown for the MMax normalized least mean square case.

Index Terms— Acoustic echo cancellation, Partial update adap-
tive filtering, Misalignment performance

1. INTRODUCTION

Adaptive filters are widely used in many applications of signal pro-
cessing. The normalized least-mean-square (NLMS) algorithm [1]
is common in practice due to its straightforward implementation and
relatively low complexity. The recursive least squares (RLS) is bet-
ter performing but requires substantially more computation. The
demands made of adaptive filters by the deployment of new tech-
nologies call for ever-increasing performance, modelling of longer
impulse responses and lower computational complexity for system
identification applications such as acoustic echo cancellation (AEC)
as shown in Figl.

A result of efforts to reduce the complexity of adaptive algo-
rithms is a class of selective tap adaptive algorithms that share the
characteristic of executing tap update operations on only a subset of
the filter coefficients at each iteration. This can be achieved by se-
lecting the taps using one of several criteria. Examples include dec-
imation in the space of the tap-update vector such as in Sequential-
LMS [2], temporal decimation such as in Periodic-LMS [2], impo-
sition of a sparse approximation to the tap-update vector such as
in MMax normalized least-mean-square (MMax-NLMS) [3], MMax
recursive least squares (MMax-RLS) [4] and Selective Partial-update
algorithms [5] that can be built around both NLMS and the affine
projection algorithm [6]. Although partial-update algorithms were
originally proposed to address computational complexity issues as
has been discussed, a class of selective-tap algorithms have also been
applied to stereophonic AEC [4][7] giving improved performance.

Important performance measures for adaptive filters character-
ize the initial convergence rate, the residual error after convergence,
the ability to track time-varying systems and the computational com-
plexity. This paper focuses on the steady-state misalignment perfor-
mance of MMax-NLMS and MMax-RLS algorithms when tracking
non-stationary systems. Consideration of algorithms’ performance
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Fig. 1. System identification structure.

under such dynamic conditions is important since the unknown sys-
tem is often non-stationary in practical applications. It is therefore
necessary to include a time-varying system model in the analysis
of such adaptive algorithms as indicated in several studies includ-
ing [8][9]. Although performance in terms of mean square error
has been analyzed for the MMax-NLMS algorithm [3], this consid-
ered only stationary systems. Our new analysis describes the perfor-
mance of a generalized class of adaptive algorithms, including both
fully updating and selective tap updating for non-stationary unknown
systems. This work considers the trade-off between computational
complexity and misalignment under such non-stationary unknown
system conditions.

2. THE MMAX-NLMS AND MMAX-RLS ALGORITHMS

In this section, we review the MMax-NLMS and MMax-RLS al-

gorithms.  Figure 1 shows a system identification structure in
which, at the nt? iteration, y, = thn and the tap-input vec-
tor X, = [24(0),...,2,(L — 1)]7 while the unknown system,

h, = [hn(0),...,hy(L — 1)]7 and L is the length of h,. An
adaptive filter h,, = [A,(0), ..., hn(L — 1)]” is used to estimate
h,, by adaptively minimizing the error signal e, = yn + Wn — Yn,
where the 7, = X~ ﬂn and w,, is measurement noise.

2.1. The MMax-NLMS algorithm

In the MMax-NLMS algorithm [10], only those taps correspond-
ing to the M largest magnitude tap-inputs are selected for updat-
ing at each iteration. Defining the subselected tap-input vector
Xn = Qnxn where Q, = diag{qn} is a L X L tap selec-
tion matrix and @, = [gn(0),...,qn(L — 1)]7, elements g, (3)
fort=0,1,...,L — 1is given by,

N _ [ 1 |zn(9)| € {M maxima of |x,|}
90 (?) 7{ 0 otherwise ’ ®

where [xn| = [|#n(0)],...,|zn(L — 1)[]". Defining ||.||3 as the
squared l2-norm, the MMax-NLMS tap-update equation is then
given by

QnXnen

—_— 2
TallZ + 6 @

Hn+1 :ﬁn+ﬂ
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where ¢ and p are the regularization parameter and step-size respec-
tively. To select the M maxima of |x,|, MMax-NLMS employs
the SORTLINE algorithm [11]. The computational complexity in
terms of multiplications and sorting operations for MMax-NLMS is
O(L + M + 2log, L) compared to O(2L) for NLMS. Further re-
duction in sorting operations can be achieved using the Short-sort
algorithm [12].

2.2. The MMax-RLS algorithm

The MMax-RLS algorithm [4] sub-samples the tap-input vectors at
each time iteration based on the MMax tap selection criterion given
in (1) where the subselected tap-input vectors propagate consistently
through the memory of the RLS algorithm. Defining X, = QnXn,
the MMax-RLS tap-update equation is given by

ﬁn+1 = ﬁn + Enen 5 (3)
where R,, = S AT I%;%] and the modified Kalman gain is
-~ AR X,
k, =R, 'X, = , 4)
1+ A 1XTR, ! %
and using the matrix inversion lemma [1], ﬁ; = A‘l[ﬁgil -

Eniflﬁgil]. Although MMax-RLS updates all taps, complexity
is reduced by the sparseness of X,. The complexity in terms of
multiplication and sorting operations for the MMax-RLS algorithm
is O(L? + M + 2log, L) compared to O(4L?) for RLS.

3. ANALYSIS OF THE MISALIGNMENT

We consider adaptive algorithms of the form

E'n.+1 - Bn + annen 5 (5)
where T, = 2uQn/(||xn ]2 +6) and T, = R;;'Q,, are the L x L
control matrices for MMax-NLMS and MMax-RLS respectively.

3.1. Non-stationary system model

A modified first-order Markov model [13][14] is employed to repre-
sent a time-varying unknown system

hop1 =¢&hn + /1= &%, ©)

where s, = [5,(0),...,8,(L — 1)]* has a normal distribution
N(0, 03) and o2 is the variance of s,,. As shown in [13], this model
has the key features that (i) the parameter 0 < & < 1 controls
the relative contributions to the instantaneous values of the coeffi-
cients of ‘system memory’ (the term £h,) and ‘innovations’ (the
term /1 — &£2s,,), (ii) the average power of the coefficients is inde-
pendent of £. It is shown in [13] that the system variation, which
notionally indicates the difficulty of tracking by an adaptive filter,
is a monotonic decreasing function of £. It has been found experi-
mentally, that £ = 0.9999 is approximately equivalent to a source
moving at 0.2 ms~! for acoustic impulse responses h,, generated
using the method of images [15].

Defining E{-} as the expectation operator, we first assume
E{h,} = 0, E{w,} = 0 and that h,, and w;, are independent'.
The dimension of fln has been chosen to match the dimension of

'If E{h,} # 0, a bias will be induced in the variance of h,, by an
amount proportional to the square value of E{hy, }.

h,,. We then define the misalignment v,, = fln — h,, which results
in the error signal given by e,, = w, — van . Hence, we obtain
Va1 =hpi1 =y @)
=vn + (1 =&hy, + Duxpwn — \/@sn — ananVn ,
Ry nt1= E{VnJerz;—o-l }
=Ry +2(1 — £l + 02 E{Tnxnx2 T}
—RunE{Tnxnx} } — Ry nE{xnxLT7 }
+E{annxTvanxnxTFT (8)

where I is the identity matrix and

5 .
E{lwn_ijwn—j} = {o otherwise
E{vavixnx, TP} = RynBE{xnx.I}}

and, from the deﬁmtlon of the first-order Markov model in (6),
E{h,h?} = FE{s,s?} = ¢2I. Following the approach adopted
in [1], we assume that the time variations of h,, are sufficiently slow
that the adaptive filter is able to track the unknown system to within
a time lag, and that after convergence, v,, is wide-sense stationary
V nso that B{v,+1vii1} = E{v,vL} = Ry . We define Ry
as the autocorrelation matrix of the mean weight error vector which
is approximately time-invariant under these assumptions. Defining
the normalized misalignment as

— o[/ I1hnl3 ="/ 1B 3 ©)

the steady-state misalignment can then be expressed as 1’ =
tr{R+ } where tr{-} is the trace operator.

n=|bn

3.2. Misalignment analysis of MMax-NLMS

For misalignment, we consider (8) and evaluate E{annxf}. We
note that elements g, (i), 7 = 1,..., L, are not independent of =, ()
since only the M largest |z (3 )| are selected. The M selected sam-
ples are assumed to have zero mean and exploiting the mean er-
godic theorem [1], the variance of X, is 52 = L' L 72(4).
Assuming that x,,x. is diagonal and using E{u,} = ¢, a scalar
constant, we can evaluate E{F xnxg} E{xn TFT}

E{pn}E{Qnxnx}} = 2c52I. We can proceed to evaluate

tr{Rv,» } using
tr{E{annxTvnv xnxTFT}}
= tr{c2E{annxsvnvaan}}

M
= cztr{Rv7n}(L + Q)TEQ%O'?E ,

~21}

M 2~2

tr{E{annxTI‘T}} = tr{ c oL . (10)

Substituting (10) into (8), we obtain
tr{Ry nt1} = tr{Ryv.n} {1 - 2%&2 + (L + 2)]\L/1 ~Zo§:|

+Mc*5202% +2(1 — €)Lo? . (11)

The misalignment for MMax-NLMS can be found using the re-

lation E{v,+1vi 1} =~ E{v,v,} = Ry, and ¢ = 2u/(Lo2)
hence giving the steady-state misalignment as

, _pod | Lo (1-§)L%?

"TMMax—NLMS = % E%MT

) (12)

where the term ¢ = 1 — co2(1 4+ 0.5L). Adopting the terminol-
ogy of [9], the first term corresponds to the estimation variance
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Fig. 2. Variation of ¢ with M for L = 128.

and is dependent on measurement noise w, while the second term
corresponds to the lag variance and is due to system time varia-
tion £. We note that an additional factor of Lo2/(c2M) arises in
the lag variance for MMax-NLMS compared” to NLMS. To quan-
tify the closeness of tap selection to that of a full tap-input vec-
tor in an MMax sense, we employ the M-ratio [7] given by M =
1Qnxx13/]1%x]13 = G2/02. As shown in [7], M exhibits only a
modest reduction for 0.5L < M < L and hence a graceful reduction
in convergence rate is expected over this range of M as compared to
fully updated NLMS. The steady-state misalignment due to tap se-
lection M is apparent by noting from (12) that, under a time-varying
unknown system condition £ < 1, the lag variance is proportional to

¢ =Los/(GaM) = L/(MM). (13)

Figure 2, shows the variation of ¢/ with the number of selected taps
M for an example case of L = 128 using a zero mean, unit vari-
ance white Gaussian noise (WGN) input sequence. We note that
for M = L, = 1since 2 = o2 and M = 1. More im-
portantly, v increases smoothly with reducing M within the region
0.5L < M < L and hence, for this range of M, we would ex-
pect only a graceful degradation in steady-state misalignment perfor-
mance for time-varying case & < 1. This is consistent with results
shown in [4] for a stationary system when £ = 1.

3.3. Misalignment analysis of MMax-RLS

Using (3) and (4), the tap update equation for the MMax-RLS algo-
rithm can be expressed as

ﬁn+1 = i\171, + ﬁ';lQanen . (14)
where ', = R;;'Qn in (5) and Ry, = Y7 A"/ Q;x,x] Q.

For n — oo,

E{ lim ﬁn} = B{ lim 0" %% 4. +§n§£)}
n—oo n—oo
1 Ma2
- 2y (15
1-\ L

and hence 'y, = (1 — \)(L/(M7Z))Qn.
lowing terms in (8) as

We may express the fol-

E{TnxnxI} = E{xaxITT} = (1 - ) ~2E{annxn}

=(1-\I, (16)

2The steady-state misalignment for NLMS can be found by letting M =
Land52 = o2.

T T TT
E{annxnvnvn XnX;, Fn} = |:

(1-XL]?
i

E{annxTxnxTQn}Rv,n
(L= AL +2)02
B Ma2

E{Tnx,xITT} = [(1 A)L] BE{Qnxnx;, Qn}

Ry,

22
= wl . (17)
Mo?2
Using the same approach as (11), by substituting the set of equations
in (17) into (8),

(0=N2L oy

= Rv,n - 2(1 - )\)Rv,n + M5 2

Rv,n+1

+( — A)2L(L + 2)o2

e %2 Rym +2(1 — €)o21.  (18)

As before, for n — 00, Ry nt1 & Ry,n = Ry. Defining ' =
tr{R+} we may then express (18) as

, _ (- N L2062 2L(1 — &)o2Ma2 (19
"IMMax—RLS 8 (1-X)p ’

where 8 = Loz 24" — (1—X)(L+2)] while v is defined in (13).
For M = L and 32 = 02, finax_RrLs 1S equivalent to the steady-
state misalignment performance of RLS. More importantly, the es-
timation variance for MMax-RLS is dependent on M. As can be
seen, [ is a decreasing function of ) and hence for a time-invariant
system with £ = 1, the steady-state misalignment Ny;yiax—rrs 1S @
decreasing function of M. This is contrary to the MMax-NLMS case
as shown in (12) where the steady-state normalized misalignment is
independent of M for time-invariant systems.

4. SIMULATION RESULTS

We present simulation results to support the analysis of our deriva-
tions and compare the performances of MMax-NLMS and MMax-
RLS to that of NLMS and RLS under time-varying system condi-
tions. Employing misalignment 7 as defined in (9), Figure 3 shows
MMax-NLMS results for a time-invariant (¢ = 1) and three time-
varying systems (£ = 0.999999,0.99999, 0.9999) where smaller
values of £ indicate higher degrees of time-variation. An adaptive fil-
ter of length L = 1024 is used with M = 128 and a step-size of 1 =
0.7. An additive white Gaussian noise (WGN) w,, is added to y,, to
achieve an SNR of 30 dB. The learning curves are averaged over 3
trials and the theoretical misalignment values of Nvvax—NLMS given
by (9) and (12) are plotted as horizontal solid lines. Theoretical mis-
alignment values of nn1.ms are plotted as dashed lines for compari-
son. The results show that for both NLMS and MMax-NLMS, their
misalignment performance degrades with reducing £. The MMax-
NLMS algorithm perform around 3 to 4 dB worse, in terms of
steady-state normalized misalignment, than NLMS for £ < 1. For
a time-invariant system, £ = 1, DM Maz—NLMS = NNLMS Since
from (12), their estimation variances are equivalent.

Figure 4 shows MMax-RLS results for the same unknown sys-
tem conditions. The adaptive filter is of length L = 1024 with
M = 128 while the forgetting factor is A = 1 — 1/(3L) and the
SNR is 30 dB. The theoretical misalignment values of NvimMax—RLS
given by (9) and (19) are plotted as straight horizontal solid lines.
In addition, the theoretical misalignment values of nr1,s computed
using M = L are plotted as dashed lines for comparison. As before,
we note that for both RLS and MMax-RLS, their misalignment per-
formance degrades with increasing deviation of £ from unity. Unlike
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Fig. 3. Theoretical normalized misalignment for NLMS (dashed) and
MMax-NLMS (solid) [L = 1024, M = 128, u = 0.7, SNR = 30 dBl.
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Fig. 4. Theoretical normalized misalignment for RLS (dashed) and MMax-
RLS (solid) [L = 1024, M =128, A =1 —1/(3L),SNR = 30 dB].

the case of MMax-NLMS, there is a degradation in misalignment
performance of ~ 5 dB for MMax-RLS compared to RLS even for
a time-invariant system £ = 1.

Fig. 5 shows the tradeoff between complexity reduction and
degradation in misalignment performance for MMax-NLMS in a
time-varying system condition of £ = 0.999999 over a range of
L/8 < M < L for L = 1024. The theoretical and experimental
steady-state misalignment is plotted against the number of multi-
plications assuming the sorting complexity is 2log, L = 20 as in
the SORTLINE algorithm [11]. The experimental curves are con-
sistent with the theoretical results to within about 0.5 dB for this
time-varying case of unknown system.

5. CONCLUSION

We have presented an analytical framework to compare the perfor-
mance of MMax-NLMS and MMax-RLS with NLMS and RLS re-
spectively under time-varying unknown system conditions. Insights
into the performance of MMax-NLMS and MMax-RLS is provided
through this mathematical analysis. It is shown that under time-
invariant system conditions, the MMax-NLMS has the same steady-
state normalized misalignment as NLMS. Under time-varying sys-
tem conditions, degradation in misalignment performance is found
and quantified. The performance in steady-state misalignment for
MMax-RLS is degraded compared to RLS even under time-invariant
system conditions. The tradeoff between computational complexity
and normalized misalignment indicates the MMax tap-selection does
not degrade convergence significantly for M = L /2 even for a time-
varying unknown system whereas M = L/8 costs an additional 2
to 2.5 dB in misalignment whilst saving a further 43% of the multi-

Normalized Misalignment (dB

1200 1400 1536 1800 2048
Multiplications

Fig. 5. Tradeoff between complexity and normalized misalignment for L =
1024, £ = 0.999999, SNR = 30 dB.

plications. Our new analysis results are verified by simulations.
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