Digital Signal Processing
Tutorial Questions Booklet

Tutorial Sheet 1

Sampling and z-transforms

1*. Write down an expression in the z-domain for Y(z) in terms of X(z) and H(z).

$$X(z) \rightarrow H(z)$$
 $Y(z)$

- 2*. Write down an expression for X(z) in terms of x(n).
- 3*. Write down an expression for y(n) in terms of x(n) and h(n).
- 4**. Show that your expression for y(n) in question 3 is related to your expression for Y(z) in question 1 by the z-transform.
- 5***. Find the inverse z-transform of the system $X(z) = \frac{7z^2 5z}{z^2 2z 3}$ for the following regions of convergence.
 - (a) |z| < 1
 - (b) |z| > 3
 - (c) 1 < |z| < 3.

State in all cases whether the system is causal, anticausal or non-causal.

Tutorial Sheet 2

Discrete Fourier Transforms

1*. Find the Discrete Fourier Series coefficients for the sequence

$$x_p(n) = 10\sin(2\pi n/3)$$
.

2**. Find the magnitude spectrum of the sequence [1, 1, 2, 3, 3]. Don't use software tools on a computer unless you write you own.

3**. A speech signal is sampled at 8 kHz. A DFT is computed of a block of 1024 samples of the data.

- (a) What is the time duration of the block?
- (b) What is the frequency resolution of the DFT?
- (c) If only 512 data samples were taken but the block was zero padded to restore the size to 1024, what would be the new answers to (a) and (b)?

4***. A sequence y(n) is constructed from a finite duration sequence x(n) of length 8 samples in the following manner

$$y(n) = \begin{cases} x(n/2) & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd} \end{cases}$$

Determine Y(k) in terms of X(k) where Y(k) and X(k) are the DFTs of y(n) and x(n) respectively.

Tutorial Sheet 3

Digital Filters

- 1**. Design a causal linear phase FIR filter with 8 taps and a cut-off frequency of $\pi/4$ using the frequency sampling method with a rectangular window.
- 2*. Find an expression for the d.c. gain of the first order lowpass filter

$$H(z) = k \frac{1 + z^{-1}}{1 - cz^{-1}}, \quad |z| > |c|$$

- 3*. For the filter of Question 2, find the value of *k* for unity gain at d.c.
- 4**. For the filter of Question 2 with unity d.c. gain, find the value of c to give -3 dB gain at $\omega = \pi/2$.
- 5**. Sketch the magnitude response for the filter of Question 2 with k = 1 and
 - (i) c = -0.9
 - (ii) c = -0.5
 - (iii) c = 0
 - (iv) c = 0.5
 - (v) c = 0.9.

Tutorial Sheet 4

Convolution

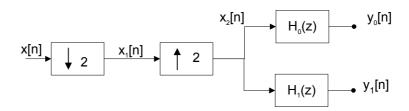
1*. Given that w(n) = x(n) * y(n), show that W(z) = X(z).Y(z).

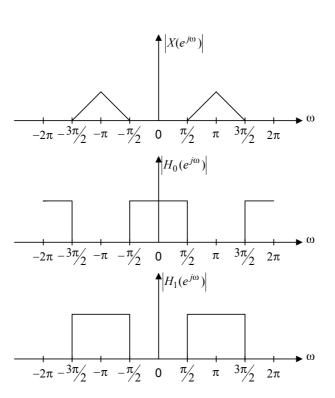
2**. Show that $x_{3p}(n) = \sum_{l=0}^{N-1} x_{1p}(l).x_{2p}(n-l)$ given that $X_p(k)$ is the DFS of $x_p(n)$ and that $X_{3p}(k) = X_{1p}(k).X_{2p}(k)$.

3***. Perform the linear convolution of the sequences x(n) and h(n) using (i) the overlap add procedure and (ii) the overlap save procedure.

$$x(n) = [3,2,1,4,1,2,3,2,1]$$

 $h(n) = [1,1]$


The suggested block size is 3.


You may use MATLAB to compute the FFTs but otherwise work this problem on paper.

Tutorial Sheet 5

Multirate Signal Processing

1**. For the system below, sketch $X_1(z), X_2(z), Y_0(z)$ and $Y_1(z)$.

- 2*. Design a scheme for reducing the sampling rate of a signal to 0.75 of its orignal sampling frequency. Sketch the magnitude of the frequency response of any filters employed.
- 3**. Given a filter $H(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$, decompose this filter using type 1 polyphase decomposition into two filters $E_0(z)$ and $E_1(z)$. Sketch the signal flow graph for both the original filter and the polyphase filter.