
1

This lecture is about Verilog HDL, which, together with another language VHDL, are
the most popular hardware languages used in industry.

Verilog is only a tool; this course is about digital electronics. Therefore, I will NOT be
going through Verilog as in a programming course - it would have been extremely
boring for both you and me if I did. Instead, you will learn about Verilog through
examples. I will then point out various language features along the way. What it
means is that the treatment of Verilog is NOT going to be systematic or
comprehensive – there will be lots of features you won’t know about Verilog.
However, you will learn enough to specify and design reasonably sophisticated
digital circuits, and you should gain enough confidence to learn the rest by yourself.

There are many useful online resources available on details of Verilog syntax etc..
Look it up as you need to and you will learn how to design digital circuit using
Verilog through designing real circuits.

.

Lecture 8 Slide 1PYKC 28 Oct 2025 EE2 – Circuits & Systems

Lecture 8

SystemVerilog HDL

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

2

Here is a list of lecture objectives. They are provided for you to reflect on what you
are supposed to learn, and not as an introduction to this lecture.

I want, by the end of this lecture, to give you some idea about the basic structure
and syntax of Verilog. I want to convince you that schematic capture is NOT a good
way to design digital circuits. Finally, I want you to appreciate how to use Verilog to
specify a piece of hardware at different levels of abstraction.

Lecture 8 Slide 2PYKC 28 Oct 2025 EE2 – Circuits & Systems

Lecture Objectives

 By the end of this lecture, you should understand:
• The basic structure of a module specified in SystemVerilog HDL
• Commonly used syntax of SystemVerilog HDL
• Continuous vs Procedural Assignments
• always block in SystemVerilog and sensitivity list
• The use of arithmetic and logic operations in SystemVerilog
• The danger of incomplete specification
• How to specify clocked circuits
• Differences between blocking and nonblocking

assignments

3

You are very familiar with schematic capture. However modern digital design
methods in general DO NOT use schematics. Instead an engineer would specify the
design requirement or the algorithm to be implemented in some form of computer
language specially designed to describe hardware. These are called “Hardware
Description Languages” (HDLs).

The most important advantages of HDL as a means of specifying your digital design
are: 1) You can make the design take on parameters (such as number of bits in an
adder); 2) it is much easier to use compilation and synthesis tools with a text file
than with schematic; 3) it is very difficult to express an algorithm in diagram form,
but it is very easy with a computer language; 4) you can use various datapath
operators such as +, * etc.; 5) you can easily edit, store and transmit a text file, and
much hardware with a schematic diagram.

For digital designs, schematic is NOT an option. Always use HDL. In this lecture, I will
demonstrate to you why with an example.

Lecture 8 Slide 3PYKC 28 Oct 2025 EE2 – Circuits & Systems

Schematic vs HDL

ü Good for multiple data flow
ü Give overview picture
ü Relate directly to hardware
ü Don’t need good programming skills
ü High information density
ü Easy back annotations
ü Useful for mixed analogue/digital

✕ Not good for algorithms
✕ Not good for datapaths
✕ Poor interface to optimiser
✕ Poor interface to synthesis software
✕ Difficult to reuse
✕ Difficult to parameterise

ü Flexible & parameterisable
ü Excellent input to optimisation & synthesis
ü Direct mapping to algorithms
ü Excellent for datapaths
ü Easy to handle electronically (only needing a

text editor)

✕ Serial representation
✕ May not show overall picture
✕ Need good programming skills
✕ Divorce from physical hardware

Schematic HDL

4

I have chosen to use Verilog HDL as the hardware description language for this
module. Verilog is very similar to the C language, which you should already know
from last year. However, you must always remember that YOU ARE USING IT TO
DESCRIBE HARDWARE AND NOT AS A COMPUTER PROGRAMME.

You can use Verilog to describe your digital hardware in three different level of
abstraction:

1) Behavioural Level – you only describe how the hardware should behave without
ANY reference to digital hardware.
2) Register-Transfer-Level (RTL) – Here the description assumes the existence of
registers and these are clocked by a clock signal. Therefore digital data is
transferred from one register to the next on successive clock cycles. Timing (in
terms of clock cycles) is therefore explicitly defined in the Verilog code. This is the
level of design we use most frequently in this course.
3) Gate Level – this is the lowest level description where each gate and its
interconnection are explicitly specified.
Verilog is not only a specification language which tells the CAD system what
hardware is supposed to do, it also includes a complete simulation environment. A
Verilog compiler does more than mapping your code to hardware, it also can
simulate (or execute) your design to predict the behaviour of your circuit. It is the
predominant language used for chip design.
You will learn Verilog through examples and exercises, not through lecture.
However, I will spend just this lecture to cover the basics of Verilog.

Lecture 8 Slide 4PYKC 28 Oct 2025 EE2 – Circuits & Systems

SystemVerilog HDL

 Similar to C language to describe/specify hardware
 Description can be at different levels:

• Behavioural level
• Register-Transfer Level (RTL)
• Gate Level

 Not only a specification language, also with associated simulation
environment

 Easier to learn and “lighter weight” than its competition: VHDL
 Very popular with chip designers

 For this lecture, we will:
q Learn through examples and practical exercises
q Use examples: e.g. 2-to-1 multiplexer and 7 segment decoder

5

After specifying your hardware in System Verilog HDL, you need to make sure that
your design works according to specification. Simulation tools such as circuit
simulators, Matlab, Mathematica etc. allow users to predict circuits and systems
behaviour WITHOUT having to implement the actual electronic system. This saves
both time and money. Furthermore, it is very hard to find a bug in a million or
billion transistor circuit on a physical chip because there is no easy way to access
internal signals. (This statement is not entirely true. There is a technique used called
“scan chain” or JTAG, which allows such internal access, but it is not easy to use.)

After simulation, the design is ”translated” to low level building blocks (such as
gates and flops) through a special type of hardware compiler to perform synthesis.
This is the stage at which circuits can be optimized. For example, redundant gates
(such as a 2-input NAND gate with one input always 0) are eliminated. Synthesis
produces a network of interconnected building blocks, known as the netlist. At this
stage, the design is still not necessary linked to any technology for implementation.

The netlist is then further processed to produce the final physical design. This final
stage involves many steps such as technology mapping, placement, routing, timing
analysis, test vector generation, test coverage analysis etc. We will NOT be
considering any part of this stage of design in this module.

Lecture 8 Slide 5PYKC 28 Oct 2025 EE2 – Circuits & Systems

HDL to Gates

v Simulation
§ Inputs applied to circuit
§ Outputs checked for correctness
§ Millions of dollars saved by debugging in simulation instead of

hardware
v Synthesis

§ Transforms HDL code into a netlist describing the hardware (i.e., a list
of gates and the wires connecting them)

v Physical design
§ Placement, routing, chip layout, …… – not considered in this module

IMPORTANT:
 When using an HDL, think of the hardware the HDL should produce, then write the

appropriate idiom that implies that hardware.
 Beware of treating HDL like software and coding without thinking of the hardware.

6

A System Verilog design consists of basic units called “modules”. Each
module, like a C function, provides specific functionality. Unlike C functions,
modules are not “called” but “instantiated”. That means that each time you
use a module in SV, you “clone” a separate entity – the clone has a totally
separate existence.
SV is entirely hierarchical. Modules can instantiate other modules.
All modules have inputs and outputs as shown on the slide.

There are many different level of abstractions in specifying a module:
1. You can specify something at a behavioural level where the SV syntax

allows you to describe the abstract functional behaviour rather than
physical structure of the hardware.

2. Alternatively, you may describe a module in a structural form. For
example, a top-level (chip level) module may consists of numerous lower-
level modules interconnected together.

Lecture 8 Slide 6PYKC 28 Oct 2025 EE2 – Circuits & Systems

SystemVerilog: Module Declaration

v Two types of Modules:
§ Behavioral: describe what a module does

§ Structural: describe how it is built from simpler modules

v module/endmodule: required to begin/end module
v example: name of the module

7

Here is a simple example of a combinational circuit consisting of many
Boolean operations described in SV as a Boolean equation. We use the
“assign” keyword to specify combinational circuit. We then use ~, & and | for
NOT, AND and OR Boolean operations respectively.

Sythesis will produce optimized logic as shown in the schematic. Simulation
will produce a trace file (i.e. a file contains signal values over time), which can
be plotted as timing diagrams.

Lecture 8 Slide 7PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Behavioural Description

synthesis

simulation

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

8

Here are some basic rules about naming variables in System Verilog. It is very
much like C or C++.

Lecture 8 Slide 8PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Syntax

v Case sensitive
§ e.g.: reset and Reset are not the same signal.

v No names that start with numbers
§ e.g.: 2mux is an invalid name

v Whitespace ignored
v Comments:

§ // single line comment
§ /* multiline
§ comment */

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

9

Combinational circuit is easiest to specify using behavioural specification with
Boolean operators. You can also choose to provide structural description
with interconnected gates as shown on the right.

It is NOT advisable to describe low-level modules in a structural way. It is
both tedious, prone to error and not easy to read.

We normally only use structural description when we connect large modules
together at a higher level of the design hierarchy.

Lecture 8 Slide 9PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Structural Description

Behavioural Structural

10

Here is an example where signals are bundled into multi-bit bus. In this case,
they are 4-bit wide as [3:0]. SV does not restrict you to name the bus from
bit 3 to bit 0. You could declare the signals as, say, [4:1] instead. However,
we adapt the notation that LSB is bit 0, and MSB is WIDTH-1, in this case 3.

Now the continuous assignment keyword “assign” results in bit-wise
operation. For example:
 assign y1 = a & b;
Means:
y1[3] = a[3] & b[3], y1[2] = a[2] & b[2]. ……

Lecture 8 Slide 10PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Bitwise Operators

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

11

The ‘&’ operator can also be used with a single operand as shown here. This
is called a “reduction” operator. It reduces multiple bits of a[7:0] to a single
bit y. It basically ANDs all bits of a[7:0] together as shown in the slide.

Lecture 8 Slide 11PYKC 28 Oct 2025 EE2 – Circuits & Systems

SysytemVerilog: Reduction Operators

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

12

The conditional assignment operator (as found in C or C++) is:
 cond ? True_value : False_value

Therefore, assign y = s ? d1 : d0;

Is the same as: If s is true, y = d1, else y = d0.

This effectively produces a multiplexer as shown here.

Lecture 8 Slide 12PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Conditional Assignment

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

13

For most modules, there are internal signals which are neither inputs nor
outputs. The module here is a single bit full adder. There are two internal
signals p, g.

These signals are not “visible” outside the module and are declared as local
signals (similar to local variables in C++ functions).

Lecture 8 Slide 13PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Internal Signals

Based on: “Digital Design and Computer Architecture
(RISC-V Edition)” by Sarah Harris and David Harris (H&H),

14

Here are all the operators that System Verilog understands. They are listed
here with their precedence.

Lecture 8 Slide 14PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Precedence of operators

Highest

Lowest
Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

15

When using System Verilog to describe hardware, always remember that you are
NOT writing a program. All “variables” are in fact signals. So, when specifying
number, beware that you are using physical wire.

Therefore numbers are specified with number of bits explicitly stated. The
general format is N’Bxxxx.

N is the number of bits. B is the base: b = binary, d = decimal, h = hexadecimal.

See above. If you don’t provide bit and base specification, the number is
assumed to be 32 bits and in decimal by default. Not specifying the size (i.e.
number of bits) of a signal in a design is not recommended.

Lecture 8 Slide 15PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Number Format

Number # Bits Base Decimal
Equivalent

Stored

3'b101 3 binary 5 101

'b11 unsized binary 3 00…0011

8'b11 8 binary 3 00000011

8'b1010_1011 8 binary 171 10101011

3'd6 3 decimal 6 110

6'o42 6 octal 34 100010

8'hAB 8 hexadecimal 171 10101011

42 Unsized decimal 42 00…0101010

Format: N'Bvalue
 N = number of bits, B = base
 N'B is optional but recommended (default is decimal)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

16

The syntax shown here is very unlike C or C++, and is particularly important to
specification of hardware.
{ . } is called a concatenation operation. { 1, 0, 1, 1} forms a 4-bit number
4’b1011.

In the example above, a[2:1] is a two bit number a[2] and a[1].

{ 3 {b[0]} } forms a three bit number with b[0] repeated 3 times.

Lecture 8 Slide 16PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Bit Manipulations (1)

v If y is a 12-bit signal, the above statement produces:

vUnderscores (_) are used for formatting only to make it
easier to read. System Verilog ignores them.

17

This is an example of slicing and merging different bits of signals d0 and d1 to
form an 8-bit output y.

If d0 = 8’b10110101, and d1 = 8’h5A, work out what is y for s = 0, and s = 1?

Lecture 8 Slide 17PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Bit Manipulations (2)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

18

We normally use “logic” to specify a signal to be a signal which has values of
0 or 1. However, there is a signal type tri which can take on three values: 0, 1,
or z, where z is high impedance. This allows System Verilog to describe tri-
state outputs.

In this module, and if en=1, then y = a. If en=0, the output y is tri-state and is
therefore not driven by this module.

Lecture 8 Slide 18PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Floating Output Z

vNote that Verilator does not handle floating output Z
Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

19

Digital circuits have delays. System Verilog provides constructs to specify
such delays (default in ns). However, Verilator ignores all such specifications:
Verilator assumes that all combinational logic output changes immediately
with inputs. As such, Verilator is NOT suitable to verify physical digital circuits
– it can only be used for functional verification.

Lecture 8 Slide 19PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Delays

v Delays are for simulation only! They do
not determine the delay of your
hardware.

v Verilator similator ignores delays – it is
cycle accurate without timing.

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

20

Sequential logics are specified using the pattern:

The “always” followed by @(sensitivity list) means that when any signal in
the sensitivity list is asserted, “statement” is executed.

All sequential circuits are described in this form.

Lecture 8 Slide 20PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Sequential Logic
v System Verilog uses idioms (or special keywords or groups of

words) to describe latches, flip-flops and FSMs

v Other coding styles may simulate correctly but produce incorrect
hardware

v GENERAL STRUCTURE:

v Whenever the event in sensitivity list occurs,
statement is executed

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

21

System Verilog has a specific syntax for D flip-flops.
 aways_ff @(posedge clk)

will synthesize one or more registers that are triggered on positive edge of
the signal clk.

Note that you can call your clock signal anything, e.g. fred would do equally
well. There is NO SIGNIFICANCE in the name itself. However, it is of course
advisable to use a signal name that is meaningful.

Note also that the statement to execute in this case is:
 q <= d;

This is called non-blocking assignment (but don’t worry about what it is
called for now). The effect of this module is: on rising edge of clk, the 4-bit
value of d is transferred to q.

This will synthesize to 4-bit D flip-flop.

Lecture 8 Slide 21PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: D Flip-Flop

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

22

You should ALWAYS add a reset control to your flops. Otherwise, your digital
system may power up in a random state.

Reset can be implemented as synchronous or asynchronous. Synchronous
reset means that reset happens only on the active edge of the clock signal.
Asynchronous reset can happen anytime whenevert the reset signal is
asserted and is independent of the clock.

The slide shows the two forms of reset description. For asychonrous case, it
also shows how the sensitivity list can contain multiple conditions.

Lecture 8 Slide 22PYKC 28 Oct 2025 EE2 – Circuits & Systems

System Verilog: Resettable D Flip-Flop

Synchronous resetAsynchronous reset

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

23

There is a form of always block which allows the specification of
combinational circuits. However, there is no advantage in this form of
specification as compare to multiple assign statements.

Lecture 8 Slide 23PYKC 28 Oct 2025 EE2 – Circuits & Systems

Combinational Logic using always

This hardware could be described with assign statements using fewer lines
of code, so it’s better to use assign statements in this case.

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

24

Here is a simple example: the design of a 4-bit hex code to 7 segment decoder. You
can express the function of this 7-segment decoder in three forms: 1) as a truth
table (note that the segments are low active); 2) as 7 separate K-maps (shown here
is for out[6] segment only); 3) as Boolean equations.
This is probably the last time you see K-maps. In practical digital design, you would
rely heavily on CAD tools. In which case, logic simplifications are done for you
automatically – you never need to use K-maps to do Boolean simplification
manually!

Lecture 8 Slide 24PYKC 28 Oct 2025 EE2 – Circuits & Systems

Putting everything together – 7 seg decoder

25

Here is a tedious implementation in the form of schematic diagram of the 7 segment
decoder as interconnected gates. Very hard to do and very prone to errors.

Lecture 8 Slide 25PYKC 28 Oct 2025 EE2 – Circuits & Systems

Method 1: Schematic Entry Implementation

TEDIOUS!!!!!

26

One could take a group of gates and specify the gates in Verilog gate primitives such
as and, or etc. Still very tedious. Here is the implementation for the out[6] output.

Lecture 8 Slide 26PYKC 28 Oct 2025 EE2 – Circuits & Systems

Method 2: Use primitive gates in Verilog

Direct mapping of gates to
primitives

Equally TEDIOUS!!!!!

27

Instead of specifying each gate separately, here is using continuous assignment
statement, mapping the Boolean equation direction to a single Verilog statement.
This is better.

Lecture 8 Slide 27PYKC 28 Oct 2025 EE2 – Circuits & Systems

Method 3: Use continuous assignment in Verilog

Direct mapping of Boolean
equation using continuous
assignment..

Much Better?

28

Here is the complete specification of the hex_to_7seg module using continuous
assignment statements. It shows how one should write Verilog code with good
comments and clear documentation of input and output ports.

Lecture 8 Slide 28PYKC 28 Oct 2025 EE2 – Circuits & Systems

Hexto7seg.v (in Verilog)

good header helps
documenting your code

module & endmodule
sandwich the content of
this hardware module

specify interface to this
module as viewed from
outside specify a 7-bit output bus,

out[6] … out[0]

declaration of
input and output
ports

assign used to specify
combinational circuit

29

Finally the 4th method is the best. We use the case construct to specify the
behaviour of the decoder. Here one directly maps the truth table to the case
statement – easy and elegant.

Instead of using: always @ (in), you could also use always @*

Lecture 8 Slide 29PYKC 28 Oct 2025 EE2 – Circuits & Systems

Method 4: Power of behavoural abstraction

• Direct mapping of truth
table to case statement

• Close to specification,
not implementation

BEAUTIFUL !!!

30

How is a Verilog description of a hardware module turned into FPGA configuration?
This flow diagram shows the various steps taken inside the Quartus Prime CAD
system.

Lecture 8 Slide 30PYKC 28 Oct 2025 EE2 – Circuits & Systems

From SystemVerilog code to FPGA hardware

SystemVerilog
code

…. If (sel) out = a;
 else out = b;

Gate netlist
AND G1(n1,n2,n3)
NOT G2(n4,n1)
……..

Optimised netlist
NAND K1(n4,n2,n3)
……

Expanded
SystemVerilog code

Elaboration: checking
syntax, expanding and
creating instances etc.

Compilation:
behaviour description
to gate netlist or
internal format related
to hardware

Synthesis: optimise
logic, tradeoff amount
of hardware with
speed etc.

FPGA specific
hardware (LE,
memory etc)

Technology mapping:
map hardware to LEs,
flipflops, memory blocks,
multipliers etc.

Physical location
of hardware and

interconnect

Place & Route: Fix the
locations and wirings of
all the hardware blocks
for a specific FPGAs

Programming
(Configuration)

bitstream

Assembler: Produce the
binary bit pattern needed
to program (or configure)
the FPGA

Verilog is very much like C. However, the declaration of a, b and sum in the module
add32 specifies the data width (i.e. number of bits in each signal a, b or sum). This
is often known as a “vector” or a “bus”. Here the data width is 32-bit, and it is
ranging from bit 31 down to bit 0 (e.g. sum[31:0]).
You can refer to individual bits using the index value. For example, the least-
significant bit (LSB) of sum is sum[0] and the most-significant bit (MSB) is sum[31].
sum[7:0] refers the the least-significant byte of sum.

The ‘+’ operator can be used for signals of any width. Here a 32-bit add operation is
specified. sum is also 32-bit in width. However, if a and b are 32-bit wide, the sum
result could be 33-bit (including the carry out). Therefore this operation could result
in a wrong answer due to overflow into the carry bit. The 33th bit is truncated.
The second example module add32_carry shows the same adder but with carry
input and carry output. Note the LHS of the assign statement. The {cout, sum} is a
concatenation operator – the contents inside the brackets { } are concatenated
together, with cout is assigned the MSB of the 33th bit of the result , and the
remaining bits are formed by sum[31:0].

31

Lecture 8 Slide 31PYKC 28 Oct 2025 EE2 – Circuits & Systems

Power of SystemVerilog: Integer Arithmetic
 Arithmetic operations make computation easy:

 Here is a 32-bit adder with carry-in and carry-out:

Now let us put all you have learned together in specifying (or designing) a 32-bit ALU
in Verilog.

There are five operators in this ALU. We assume that there are three arithmetic
blocks, and three multiplexers (two 2-to-1 MUX and one 3-to-1 MUX).

32

Lecture 8 Slide 32PYKC 28 Oct 2025 EE2 – Circuits & Systems

A larger example – 32-bit ALU in SV

 Here is an 32-bit ALU with 5 simple instructions:

Each hardware block is defined as a Verilog module. So we have the following
modules:

mux32two – a 32-bit multiplexer that has TWO inputs
mux32three – a 32-bit multiplexer that has THREE inputs
mul16 – a 16-by-16 binary multiplier that produces a 32-bit product
add32 – a 32-bit binary adder
sub32 – a 32-bit binary subtractor

33

Lecture 8 Slide 33PYKC 28 Oct 2025 EE2 – Circuits & Systems

The arithmetic modules

 Here is an 32-bit ALU with 5 simple instructions:

Now let us put all these together.
Note that mxu32two is being used twice and therefore this is instantiated two
times with two different instance names: adder_mux and sub_mux.
Connections between modules are implicit through the use of signal names. For
example, the 16-bit inputs to the multiplier are taken from the lower 16-bits of a
and b inputs (i.e. a[15:0] and b[15:0]).

34

Lecture 8 Slide 34PYKC 28 Oct 2025 EE2 – Circuits & Systems

Top-level module – putting them together

 Given submodules:

