Lecture 1: Overview – Digital Concepts

Digital Electronics I Professor Peter Cheung

Aim

• to give a first course in **digital electronics** providing you with both the knowledge and skills required to design simple digital circuits and preparing you for a second, more advanced, course next year.

Department of EEE Imperial College London (Slides based on Floyd & Tocci)						
E1.2 Digital Electronics I	1.1	7 Oct 2007	E1.2 Digital Electronics I	1.2 7 Oct 2007		
Imperial College London Objectives			Imperial College London Course Content			
 to impart to you a formalism of logic enabling you to analyse logical processes to enable you to implement simple logical operations using combinational logic circuits to enable you to understand common forms of number representation in digital electronic circuits and to be able to convert between different representations to enable you to understand the logical operation of simple arithmetic and other MSI circuits (Medium Scale Integrated Circuits) to impart to you the concepts of sequential circuits enabling you to analyse sequential systems in terms of state machines to enable you to implement synchronous state machines using flip-flops 			 15 Lectures Overview Introduction to Data Representation Boolean Algebra and Combination Logic 1 Boolean Algebra and Combination Logic 2 Combinational Logic Gat and Implementation More Gates and Multiplexers Data representation 2 	 8. MSI Devices 9. Programmable Devices 10. Sequential Circuits 11. State machines 1 12. State machines 2 13. Design of Synchronous Sequential Circuits 14. Application Examples 15. Revision 		
E1.2 Digital Electronics I	1.3	7 Oct 2007	E1.2 Digital Electronics I	1.4 7 Oct 2007		

Imperial College London	Imperial College London			
Tutorial Questions	Examination			
 accompany each lecture a chance to practice the techniques studied graded according to difficulty: * easy, only a little interesting *** harder, more interesting *** challenge, very interesting completion of all * and ** questions is essential to your success completion of *** questions indicates a very good understanding answers given out shortly after questions not assessed 	 In the summer term past papers available in advance to show the style 			
E1.2 Digital Electronics I 1.5 7 Oct 2007	E1.2 Digital Electronics I 1.6 7 Oct 2007			
Imperial College London Lectures	Imperial College London Study Groups			
 Fifteen lectures of about 50 minutes each copies of the overhead slides given out some blanks in the slides for you to fill in, for example: the truth table for an AND gate is: X Y Z=X.Y 0 0 1 0 1 0 references given to the course book as we go along you are expected to read the relevant sections of the book as "homework" just after the lecture 	 A chance to ask questions about the work presented in lectures the tutorial questions 			

7 Oct 2007

Imperial College London

Text Books

- "Digital Systems Principles and Applications", 9th Ed, ٠ R. J. Tocci, N. S. Widmer, G. Moss, Pearson, 2004 (~£45)
- "Digital Fundamentals with PLD Programming", T.L. Floyd, Prentice Hall, June 2005 (~£45)

Imperial College London **Digital and Analog Quantities** 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 t (ms Analogue quantities have continuous values sets of values

E1.2 Digital Electronics I	1.9	7 Oct 2007	E1.2 Digital Electronics I	1.10	7 Oct 2007

Imperial College London

Binary Digits, Logic Levels, and Digital Waveforms

- The conventional numbering system uses ten digits: 0,1,2,3,4,5,6,7,8, and 9.
- The binary numbering system uses just two digits: 0 and 1.
- The two binary digits are designated **0** and **1**
- They can also be called LOW and HIGH, where LOW = 0 and HIGH = 1

Imperial College London

•

٠

Binary Digits, Logic Levels, and Digital Waveforms

Binary values are also represented by voltage levels

• f = frequency of the waveform

 $f = \frac{1}{T}$

The duty cycle of a binary waveform is defined as:

Duty cycle = $\left(\frac{t_w}{T}\right)$ 100%

Imperial College

London

Basic Logic Operations

One output

Two or more

OR

inputs

One output

7 Oct 2007

There are only three basic logic operations:

One output

AND

One input

NOT

Two or more

inputs

Imperial College London			Imperial College London			
 What are the outputs 12 (one for each ligh) What are the inputs? start the controller (re timing inputs (clocks) What about performance reliability cost power consumption size, etc ? 	s? t) but only 6 are unique eset)	•	 What about the I IF N/S is green AND E-W is red AND 45 second THEN the N/S Ii What about the o It looks like a co We need to form We need to con results 	logic? s has expired since the las ghts should be changed fro digital techniques to in mputer programme (that's n logical combinations of in ditionally set outputs accor	t light change om green to yellow nplement this? logical!) puts ding to the logical	
E1.2 Digital Electronics I	1.25	7 Oct 2007	E1.2 Digital Electronics I	1.26	7 Oct 2007	