Imperial College London			Imperial College London			
			Points	Addressed in this Lect	ure	
Lecture 10: More on Flip-flops Professor Peter Cheung Department of EEE, Imperial College London			 Introduction to Moore model and Mealy model state diagrams State diagrams and state tables of flip-flops Timing parameters of flip-flops 			
E1.2 Digital Electronics I	10.1	Nov 2007	E1.2 Digital Electronics I	10.2	Nov 2007	
 Interest and the arrows to show the required conditions to transit between states Interest and the arrows to show the required conditions to transit between states 			<section-header> Imperial College State Diagram of RS Flip-Flop The circuit must be in either state 1 or state 2. In the circuit must be in either state 1 or state 2. In state 1 Q output = 0 an input of S=1, R=0 causes a transition to state 2 any other input leaves the circuit in state 1 (an input of S=R=1 is not allowed for RS flip-flops) In state 2 Q output = 1 an input of S=0, R=1 causes a transition to state 1 any other input leaves the circuit in state 1 an input of S=0, R=1 causes a transition to state 1 any other input leaves the circuit in state 1 an input of S=0, R=1 causes a transition to state 1 any other input leaves the circuit in state 2 </section-header>			
E1.2 Digital Electronics I	10.3	Nov 2007	E1.2 Digital Electronics I	10.4	Nov 2007	

Imperial College London State Table of RS-Flip-Flop	Imperial College London			
 A state table is a tabular form of the state diagram one row for each possible state Shows the next state which will be entered for all possible combinations of inputs The ordering of the inputs is same as for Karnaugh map 	• Example $\frac{Present State}{00 01 11 10}$ $\frac{1}{12 2 2 1 2 1 2 1 2}$ • The circuits is in state 2; the inputs are S=1, R=0. What is the next state? - state 2			
E1.2 Digital Electronics I 10.5 Nov 2007	E1.2 Digital Electronics I 10.6 Nov 2007			
Imperial College London Assigned State Table of RS-Flip-Flop	Imperial College London Boolean Expression from Assigned State Table			
 Differs from a State Table by showing the associated outputs not the state numbers 	 We continue the example of the RS flip-flop and call the "next output" Q+ The assigned state table defines the logical relationship between the inputs (S and R) and Q+ a Boolean relationship Hence we can re-draw the assigned state table as a Karnaugh map 			
Present Output Next output inputs: SR 00 01 11 10 0 0 X 1				
 1 1 0 X 1 The output of the circuits is 1; the inputs are S=1, R=0. What is the next output? 1 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

10.8

• The Boolean expression is then obtained by grouping terms as usual

 $\frac{Q^+}{Q^+} = Q\overline{R} + S$ $\overline{Q^+} = \overline{Q}\overline{S} + R$

• Such equations are called characteristic equations

Imperial College London

Implementation from Characteristic Equations

- The flip-flop can be implemented using gates
- It is common to re-write using NAND gates only

Asynchronous RS Flip-flop

E1.2 Digital Electronics	I	10.9	Nov 2007	E1.2 Digital Electronics I	10.10	Nov 2007
Imperial College London	JK State	e Implementation		Imperial College London		
Moore Model State Diagram			Characteristic Equation			
• Assigned State Table			$Q^{+} = J\overline{Q} + \overline{K}Q = \overline{J\overline{Q}}.\overline{\overline{K}Q}$ - when J=1, K=0 then Q+ = \overline{Q} +Q = 1 - when J=0, K=1 then Q+ = 0 - when J=1, K=1, then Q+ = \overline{Q} (toggle)			
P	Present Output 0 1	Next output inputs: JK 00 01 11 10 0 0 1 1 1 0 0 1		 Note that the JK i equation A master-slave comparison 	s not normally implemented	d directly from this
E1.2 Digital Electronics I 10.11 Nov 2007			Nov 2007	E1.2 Digital Electronics I	10.12	Nov 2007

Imperial College Imperial College London London **D-type Implementation Mealy Model State Diagrams** Moore Model State Diagram Similar principles to Moore model but different labelling State circles are labelled only with state numbers • Outputs are written next to inputs on the arrows • 0 • E.g. JK Flip-flop Inputs J and K Assigned State Table **Characteristic Equation** Output 10/1, 11/1 Present Output Next output 00/100/0 10/1 $O^+ = D$ 2 01/0 0 1 01/0.11/0 0 0 1 1 0 1 State Number E1.2 Digital Electronics I 10.13 Nov 2007 E1.2 Digital Electronics I 10.14 Nov 2007 Imperial College Imperial College London London **Cascaded Flip-flops Timing Parameters of Flip-flops** For correct operation of flip-flops · Hold time of a flip-flop is always less than the propagation delay between CLOCK and Q - data inputs must not change either just before or just after clock pulses Rising edge of CLOCK causes the data at A to go to B • If data changes near the clock the flip-flop might and data at B to go to C in example below enter a metastable state neither 0 nor 1 The amount of time before and after the clock pulse in which data transitions are not allowed are called: R C D 1 D setup and hold times defined by the manufacturer ≻C1 ≻C1 CLOCK_ CLOC

setup

10.15

hold

Nov 2007

10.16

- What data does C end up with?
 - B doesn't change immediately because of the propagation delay
 - The input to the second flip-flop is value of B just before the CLOCK rising edge i.e. B->C; A->B
- Hence
 - This circuit shifts the data one position to the right on each clock pulse

E1.2 Digital Electronics I

10.17

Nov 2007