Imperial College London	Imperial College London
	Points Addressed in this Lecture
Lecture 7: Signed Numbers & Arithmetic Circuits Professor Peter Cheung Department of EEE, Imperial College London (Floyd 2.5-2.7, 6.1-6.7) (Tocci 6.1-6.11, 9.1-9.2, 9.4)	 Representing signed numbers Two's complement Sign Extension Addition of signed numbers Multiplication by -1 Multiplication and division by integer powers of 2 Adder & subtractor circuits Comparators Decoders Encoders
E1.2 Digital Electronics I 7.1 8 Nov 2005	E1.2 Digital Electronics I 7.2 8 Nov 2005
Image: Binary Representations (Review)• We have already seen how to represent numbers in binary• Review $(179)_{10}$ is $(10110011)_2$ is $(B3)_{16}$ is $(263)_8$ - HEX: 10110011_3 B 3 - OCTAL 10 11 2 6 3	 Imperial College BCD (Binary Coded Decimal) Each digit of a decimal number is coded using Binary The 4 bit binary words are joined to make the full decimal number E.g. 987 in decimal 9 : 1001 8 : 1000 7 : 0111 So 987 in decimal becomes 1001 1000 0111 in BCD

7.3

Imperial	College
London	-

Summary

	3	Summar	у				0 - (:	-:+:)
Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Binary 00000 00010 00011 0010 00101 00101 00101 00111 0110 00111 0100 00111 01001 01011 01010 01011 01010 01011 01101 01110 01111 01000	HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F 10	BCD 0000 0000 0000 0011 0000 0011 0000 0101 0000 0101 0000 0101 0000 0101 0000 0111 0000 0111 0000 1001 0000 1001 0001 0001 0001 0001 0001 0011 0001 0011 0001 0011 0001 0011 0001 0011 0001 0101 0001 0101 0001 0101 0001 0101 0001 0101 0001 0101 0001 0101	Octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20			 How to rep Solution 1 the remain 7 0 = +ve 1 = -ve S Probler Solution 2 invert each 	oresent signe : Sign-magni h bits to repre- magnitud m: need to hand : One's comj h bits in the m	d numbers? tude - Use on sent magnitud 0 le le sign and ma blement - If the lagnitude	nsigned (i.e. po e bit to represe te +27 = 0001 10 -27 = 1001 10 gnitude separate te number is ne +27 = 0001 10 -27 = 1110 0 to -27 results in	ent the sign , 11 _b 11 _b 11 _b egative, $p_{11_{b}}$ 100 _b
E1.2 Digital Electronics I		7.5			8 Nov 2005		E1.2 Digital Electronics I		7.6		8 Nov 2005
Imperial College London • Solution 3: Tv by taking its n	o's comple		present neg		ers	Imj Lor	A commor	n method to	•	ve numbers:	
Po	sitive numbe ert all bits d 1	er +27 -27	= 0001 1011 1110 0100 = 1110 0101	b			negative	numbers /e this, let the on of 2's C	MSB have a r	numbers and h negative weigh Numbers	
Unsigned numb	⊃r	27 2		23			Decimal	2':	s Complemen	t (Signed Binar	y)
choighed fullib	-							-8	+4	+2	+1
		-2 ⁷ 2	20	20			5	0	1	0	1
Signed 2's com	olement	S					-5	1	0	1	1
$x = -b_{N-1}$	$2^{N-1}+b$	$p_{N-2}2^{N}$	^{<i>V</i>-2} +••	•+ $b_1 2^1$ -	$+b_0 2^0$		7 -3	0 1	1 1	1 0	1 1
E1.2 Digital Electronics I		7.7			8 Nov 2005		E1.2 Digital Electronics I		7.8		8 Nov 2005

Imperial College London

Signed numbers Basics

Imperial College London	Imperial College London
Why 2's complement representation?	Comparison Table
 If we represent signed numbers in 2's complement form, subtraction is the same as addition to negative (2's complemented) number. 27 0001 1011_b - 17 0001 0001_b +27 0001 1011_b + 10 0000 1010_b +27 0001 1011_b + -17 1110 1111_b + 10 0000 1010_b Note that the range for 8-bit unsigned and signed numbers are different. 8-bit unsigned: 0 +255 8-bit 2's complement signed number: -128 +127 	$ \begin{array}{c cccc} Unsigned & Binary & 2' comp \\ \hline 7 & 0111 & 7 \\ 6 & 0100 & 6 \\ 5 & 0101 & 5 \\ 4 & 0100 & 4 \\ 3 & 0011 & 3 \\ 2 & 0010 & 2 \\ 1 & 0001 & 1 \\ 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0000 & 0 \\ \hline 1 & 0 & 0101 & -2 \\ \hline 1 & 1 & 011 & -5 \\ \hline 1 & 1 & 011 & -5 \\ \hline 1 & 1 & 011 & -5 \\ \hline 1 & 1 & 010 & -6 \\ \hline 9 & 1001 & -7 \\ \hline 8 & 1000 & -8 \\ \hline \end{array} $
E1.2 Digital Electronics I 7.9 8 Nov 2005	E1.2 Digital Electronics I 7.10 8 Nov 2005
Imperial College London Sign Extension	Imperial College London Sign Extension
<text><figure><text></text></figure></text>	 Sometimes we need to extend a number into more bits Decimal converting 12 into a 4 digit number gives 0012 we add 0's to the left-hand side Unsigned binary converting 0011 into an 8 bit number gives 00000011 we add 0's to the left-hand side For signed numbers we duplicate the sign bit (MSB) Signed binary converting 0011 into 8 bits gives 00000011 (duplicate the 0 MSB) converting 1011 into 8 bits gives 11111011 (duplicate the 1 MSB) Called "Sign Extension"

Imperial College London		Imperial College London									
Signed Addition		Multiplication of Signed Numbers by -1									
 The same hardware can be used for 2's cor signed numbers as for unsigned numbers 		 Inverting all the bits of a 2's complement number X gives: -X-1 since adding it back onto X gives -1 									
 this is the main advantage of 2's complement for Consider 4 bit numbers: the Adder circuitry will "think" the negative numb greater than they are in fact but if we take only the 4 LSBs of the result (i.e. ig out of the MSB) then the answer will be correct p with the range: -8 to +7. To add 2 n-bit signed numbers without pose overflow we need to: sign extend to n+1 bits use an n+1 bit adder 	ers are 16 nore the carry roviding it is	 first inv then ad Exceptio doesn't 	rert all the bits dd 1 n: t work for the ma esn't work for -1	5 <u>-6</u> -1 gned number by -1: aximum negative number 28 in a 8-bit system	X X-1 1						
Imperial College London		Imperial College London		N							
Multiplication and Division by 2• In decimal, multiplying by 10 can be achieve 	ed by o at the LS digit by 2 ^N end	– the bi – sign e – Decir – Unsig	extension must be nal: (486) ₁₀ divide (110101) ₂ div (53) ₁₀ (110101) ₂ div (53) ₁₀ ed 2's Complemen (110101) ₂ div (-11) ₁₀	ne end" is the remainder maintained for 2's complem ed by 10 gives 48 remainde vided by 2 gives 11010 rem (26) ₁₀ vided by 4 gives 1101 rema (13) ₁₀	er 6 ainder 1 inder 01 mainder 1						

E1.2 Digital Electronics I

7.16

8 Nov 2005

8 Nov 2005

E1.2 Digital Electronics I

7.15

Summary of Signed and Unsigned Numbers

Unsigned	Signed
MSB has a positive value (e.g. +8 for a 4-bit system)	MSB has a negative value (e.g8 for a 4-bit system)
The carry-out from the MSB of an adder can be used as an extra bit of the answer to avoid overflow	To avoid overflow in an adder, need to sign extend and use an adder with one more bit than the numbers to be added
To increase the number of bits, add zeros to the left-hand side	To increase the number of bits, sign extend by duplicating the MSB
Complementing and adding 1 converts X to $(2^{N} - X)$	Complementing and adding 1 converts X to -X

Imperial College London

Binary Addition Recall the binary addition process А 1 0 0 1 1 +B 0 0 1 S 0 • LS Column has 2 inputs 2 outputs Inputs: $A_0 \quad B_0$ $S_0 C_1$ – Outputs: • Other Columns have 3 inputs, 2 outputs - Inputs: $A_n \quad B_n \quad C_n$ - Outputs: $S_n \quad C_{n+1}$ - We use a "half adder" to implement the LS column - We use a "full adder" to implement the other columns - Each column feeds the next-most-significant column. E1.2 Digital Electronics I 7.18 8 Nov 2005 Imperial College London **Full Adder** В Ci S Co А • Truth Table 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

Imperial College London

E1.2 Digital Electronics I

Half Adder

А

В

7.17

- Truth Table
- 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1

S

С

- $S = \overline{A}B + A\overline{B} = A \oplus B$ Boolean Equations C = AB
- Implementation ≥1 S а в в Α_ - &
 - Note also XOR implementation possible for S

8 Nov 2005

Boolean Equations

1

0

0

1

1

 $= A \oplus B \oplus C_i$

 $= AB + AC_i + BC_i$ $= AB + C_i(A + B)$

1

0

1

0

1

 $C_o = \overline{ABC_i} + A\overline{BC_i} + AB\overline{C_i} + AB\overline{C_i}$

 $S = \overline{A}.\overline{B}.C_i + \overline{A}.B.\overline{C_i} + A.\overline{B}.\overline{C_i} + A.B.C_i$

0

1 1

1

1

0

0

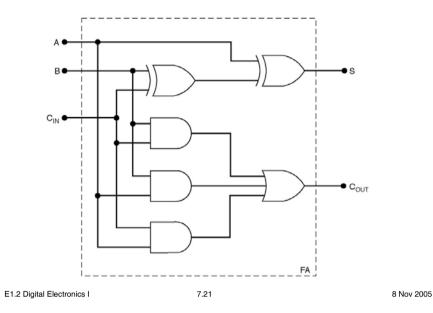
0

1

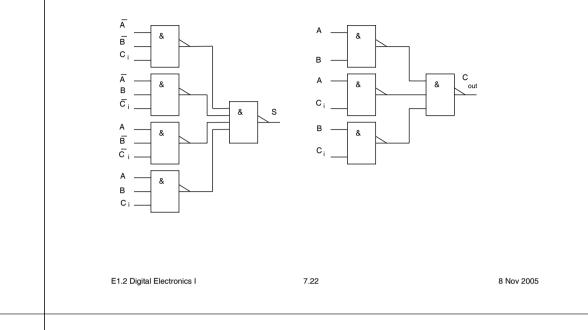
1

1

0


1

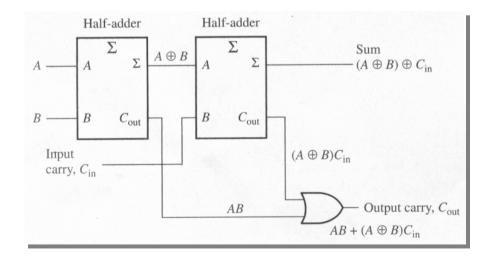
1


1

Complete circuitry for a FA

• Implementation (using NAND gates only)

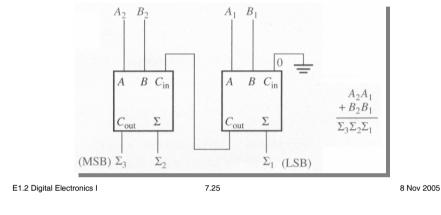
Imperial College London


Full Adder from Half Adders

• Truth Table

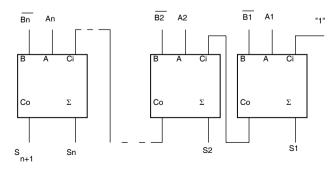
А	В	HA_{s}	HA_{c}	Ci	S	Co
0	0	0	0	0	0	0
0	0	0	0	1	1	0
0	1	1	0	0	1	0
0	1	1	0	1	0	1
1	0	1	0	0	1	0
1	0	1	0	1	0	1
1	1	0	1	0	0	1
1	1	0	1	1	1	1

Imperial College London


Full Adder from Half Adders

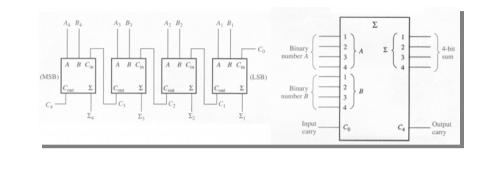
Imperial College London

Parallel Adder


- Uses 1 full adder per bit of the numbers
- The carry is propagated from one stage to the next most significant stage
 - takes some time to work because of the carry propagation delay which is n times the propagation delay of one stage.

Imperial College London

Parallel Subtraction using Parallel Adder


- Subtraction can be achieve by adding the complement
 E.g.: 6 3 = 6 + (-3) = 3
- 2's complement :- invert all bits and then add 1
 - Use Carry-in of first stage for the "add 1"
 - Invert all the inputs bits of B

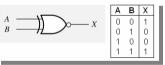
7.27

8 Nov 2005

4-bit Parallel Binary Adders

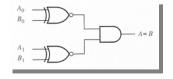
Imperial College

London


E1.2 Digital Electronics I

Imperial College London

7.26


Comparators

• 1-Bit Comparator

The output is 1 when the inputs are equal

• 2-Bit Comparator

The output is 1 when $A_0 = B_0 AND A_1 = B_1$

Imperial College London

Comparators

• 4-Bit Comparator

One of three outputs will be HIGH:

- A greater than B (A > B)
- A equal to B (A = B) • A less than B (A < B)
- COMP 0 A_0 A_1 A A > B A_2 A_3 3 A = B B_0 \cap B_1 A < BB B_2 B_2

E1.2 Digital Electronics I

Imperial College London

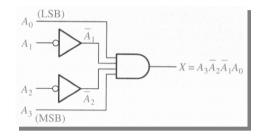
Decoders

7.29

• 4-bit decoder

BIN	ARY	INP	UTS	DECODING	1000							C	DUT	PUT	-s			Sec.	C.	
A ₃	A ₂	A1	Ao	FUNCTION	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	1	1	$\overline{A}_3 A_2 A_1 A_0$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	1	1	$A_3\overline{A}_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	1	0	0	$A_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	$A_3A_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	0	$A_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	$A_3A_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Imperial College London


Decoders

• Binary decoder

The output is 1 only when:

- $A_0 = 1$
- $A_2 = 0$
- $A_3 = 0$

This is only one of an infinite number of examples

BIN/DEC

13 k

14

15 k

E1.2 Digital Electronics I

7.30

Decoders

Binary Inputs

 $A_0 =$

 $A_{1} =$

 $A_2 =$

A3 ---

1

2

4

8

8 Nov 2005

- 4-bit decoder
 - Binary inputs
 - Active-low outputs

Truth

Table

Decimal

Outputs

8 Nov 2005

DECIMAL

DIGIT

0

1

2

3

4

5

6

7

8

9

0 0

0 0

0

0 0

0

0

0

0

1 0

1 0

0 1

Decoders

DECODING

FUNCTION

 $\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$

 $\overline{A_3}\overline{A_2}\overline{A_1}A_0$

 $\overline{A}_3\overline{A}_2A_1\overline{A}_0$

 $\overline{A}_3\overline{A}_2A_1A_0$

 $\overline{A}_{3}A_{2}\overline{A}_{1}\overline{A}_{0}$

 $\overline{A}_3 A_2 \overline{A}_1 A_0$

 $\overline{A}_{3}A_{2}A_{1}\overline{A}_{0}$

 $\overline{A}_3A_2A_1A_0$

 $A_3\overline{A}_2\overline{A}_1\overline{A}_0$

 $A_3\overline{A}_2\overline{A}_1A_0$

BCD/DEC

Decimal

Outputs

Binary Inputs

 $A_0 =$

2

4

8

 $A_{1} = -$

 $A_2 =$

 $A_3 =$

• BCD-to-decimal decoder

BCD CODE

0

1

0

0 1

0 1

0 1

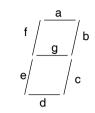
0

0

1

0

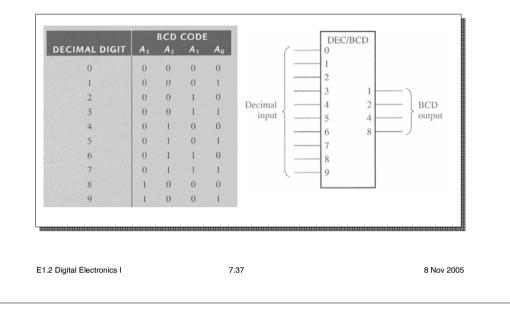
1 0


1 1

0 0

BCD-to-7 Segment Display Decoder

- LCD or LED displays can display digits made of up to 7 segments or lines
- Decode 4 bits BCD into 7 control signals using a BCD/7SEG decoder



E1.2 Digital Electron	ics I	7.33		8 Nov 2005	E1.2 Digital Electronics I	7.34	8 Nov 2005
Imperial College London		Decoders			Imperial College London	Decoders	
• BCE	D-to-7-seg	jement de	coder		BCD-to-7-	segement decoder	r
DECIMAL DIGIT 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 14 15	INPUTS A C B A 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1	SEGMENT O a b c d 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X X X X X X X X X	c f g 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 X X X X X X X X X X X X X X X	Logic Diagram	Truth	Binary BCD/7-seg Inputs a A_0 1 b A_1 2 b A_2 4 c A_3 8 e g f g	7-Segment Outputs
E1.2 Digital Electron	ics I	7.35		8 Nov 2005	E1.2 Digital Electronics I	7.36	8 Nov 2005

Imperial College London

Encoders

• Decimal-to-BCD encoder

