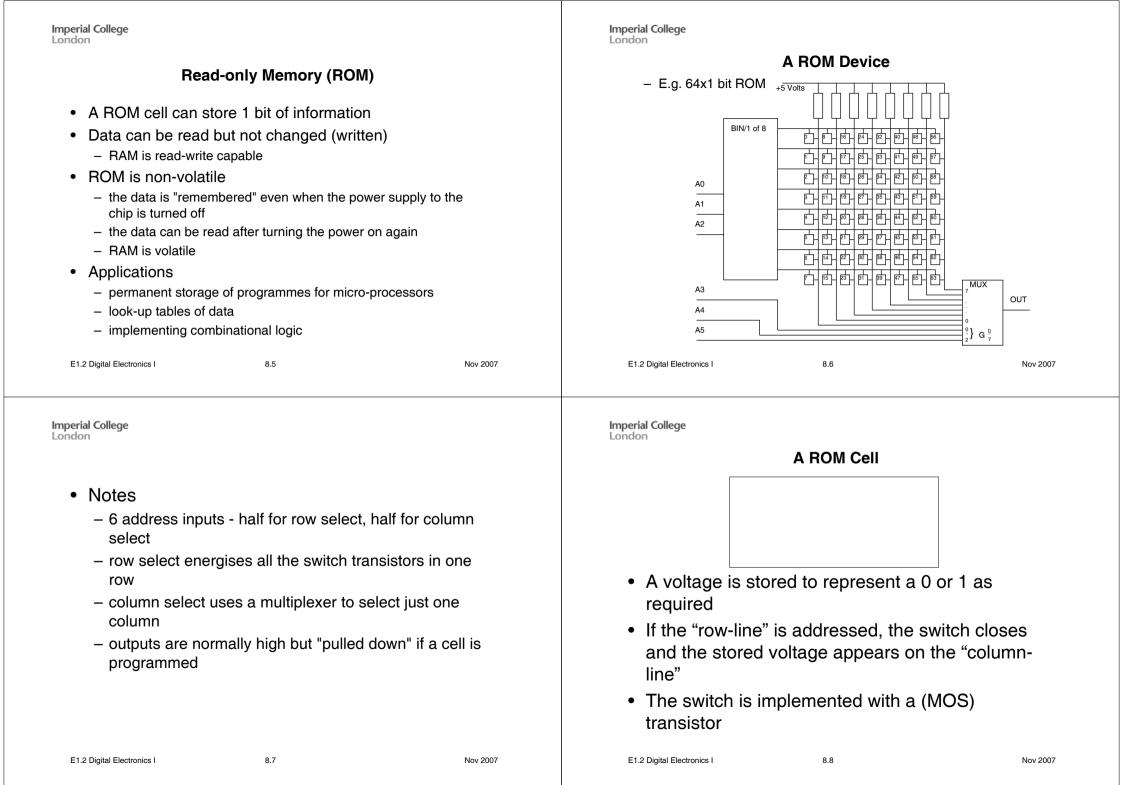
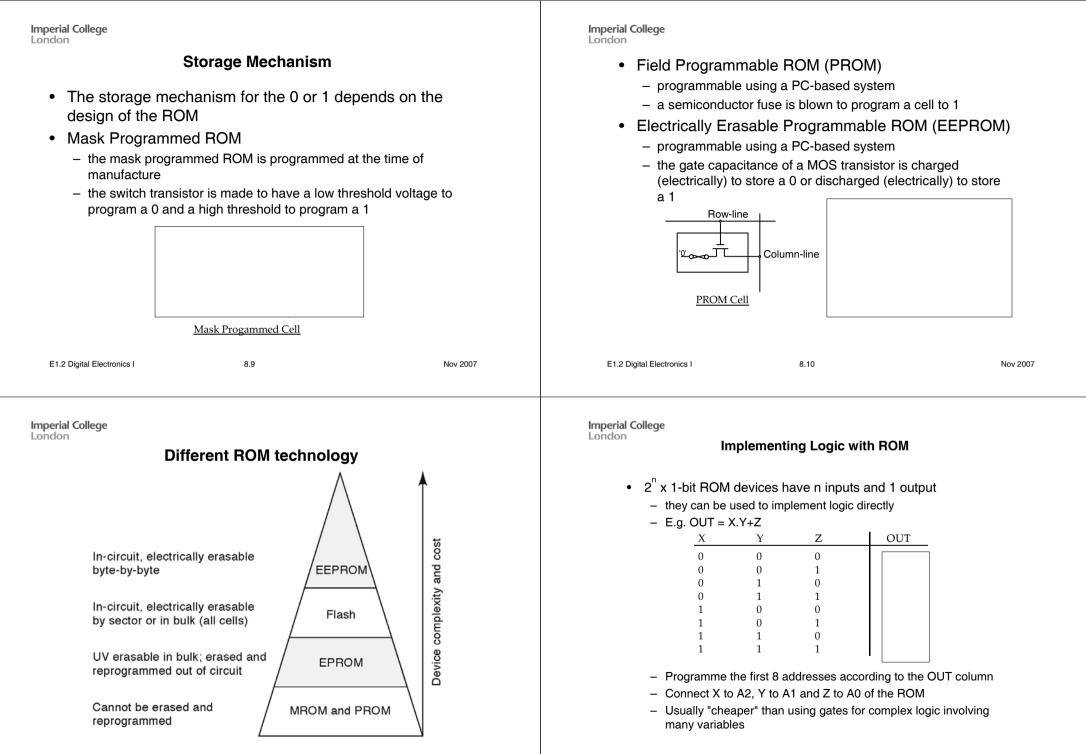
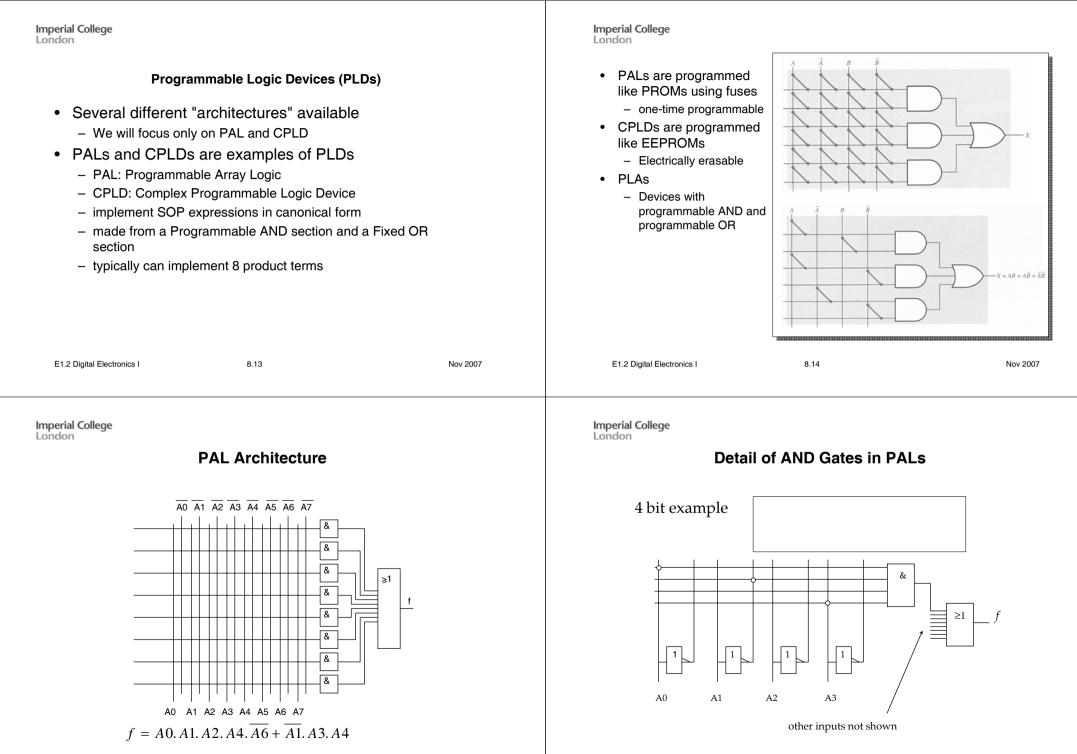
Lecture 8: ROM & Programmable Logic Devices

Professor Peter Cheung Department of EEE, Imperial College London


> (Floyd 10.1,10.3-5, 11.1-11.3) (Tocci 12.1, 12.4-5, 13.1-13.4)


Points Addressed in this Lecture


- Read-only memory
- Implementing logic with ROM
- Programmable logic devices
- Implementing logic with PLDs
- Static hazards

E1.2 Digital Electronics I	8.1	Nov 2007	E1.2 Digital Electronics I	8.2	Nov 2007
Memory Cell: circuit Memory Cell: circuit Memory Word: 8 – 6 Byte: a group of 8 bir Capacity (=Density) - 4096 20-bit words = 81,920 bits = 4096 - 1 M or 1 meg = 2 ²⁰ - 1 G or 1 giga = 2 ³⁰ Address Read Operation (=fet Write Operation (=set)	54 bits ts *20 = 4K*20 etch operation)	ormation	Imperial College London	Addresses 000 Word 0 001 Word 1 010 Word 2 011 Word 3 100 Word 4 101 Word 5 110 Word 6 111 Word 7	2 3 4 5

8.3

Imperial College London	Imperial College London		
 Summary of Combinational Logic Building Blocks Gates seven basic gates from which all other circuits are made AND/NAND, OR/NOR, XOR/XNOR, NOT Multiplexers act as switches to connect one output to one of a number of input signals can also be used to implement logic Decoders inverted multiplexers (sometimes called demultiplexers) act as switches to connect one input to one of a number of output signals also includes circuits such as Binary to 7 Segment decoders four to seven bit decoders 	 Arithmetic Circuits binary adders, comparators, multipliers issues of signed or unsigned number representation are important Programmable Logic Devices ROMs implement arbitrary logic functions efficient for large combination logic circuits CPLDs implement canonical SOP Boolean expressions Advantages: reduction in chip count easy upgrade by just reprogramming Disadvantages programming equipment required 		
E1.2 Digital Electronics I 8.17 Nov 2007	non-standard parts to stock and document E1.2 Digital Electronics I 8.18 Nov 2007		
Imperial College London Static Hazards	Imperial College London Avoid Static Hazards		
• Gates have finite propagation delay - This can cause glitches in logic waveforms • Consider an inverter - propagation delay of ~2nS • E.g. Implementation of $f(A, B, C) = AB + \overline{A}C$ - If we use an inverter to generate \overline{A} from A then changes in \overline{A} will be later than changes in A .	• Using a Karnaugh map, look for groups of minterms which do NOT overlap - These are potential hazards • Avoid the hazard by introducing additional groups so that no non- overlapping groups remain $A \setminus BC 00 01 11 10 \\ 0 \\ 1 0 0$ • Groups are $\overline{A}C + AB$ which do not overlap - Potential hazard • Introduce the additional term <i>BC</i> to avoid the hazard $\overline{A}C + AB + BC$		
E1.2 Digital Electronics I 8.19 Nov 2007	E1.2 Digital Electronics I 8.20 Nov 2007		