Digital Electronics

Answer Sheet 9 & 10

5. Given a D flip-flop, we have to consider what logical combination of its output and circuit inputs which, when connected to the input of the D flip-flop will cause it to operate as T or JK as appropriate. We know that D is fed to Q on the rising edge of the clock.

For a T flip-flop, we require

T	Q	D
0	0	0
0	1	1
1	0	1
1	1	0

Karnaugh map for D in terms of T and Q:

$T \setminus Q$	0	1
0	0	1
1	1	0

Hence $D = T \oplus Q$

For a JK flip-flop, we require

J	K	Q	D
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Karnaugh map for D in terms of J, K and Q:

Q∖JK	00	01	11	10
0	0	0	1	1
1	1	0	0	1

Hence $D = \overline{Q}.J + Q.\overline{K}$

