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Lecture 8  ARM Instruction Set Architecture

� In this lecture, we will consider some aspects of ARM instruction
set architecture (ISA) in some details.

� We shall consider the format of some instruction codes and their
relationship with the assembly instruction.

� We starts with a simple Branch and Branch with Link instruction:

� Note that the top 4 bits [31:28] are always used to specify the
conditions under which the instruction is executed.

� The L-bit (bit 24) is set if it is a branch with link instruction.
❖ BL is jump to subroutine instruction - r14 <- return address

� 24-bit signed offset specifies destination of branch in 2's
complement form. It is shifted left by 2 bits to form a word offset.

� The range of branch is +/- 32 Mbytes.
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ARM condition codes fields
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Data Processing Instructions

� Uses 3-address format: first operand - always register; second
operand - register/shifted register/immediate value; result - always
a register

� For second register operand, it can be logical/arithmetic/rotate.
This is specified in "shift-type"

� How much to shift by is either a constant #shift or a register
� For immediate value second operand, only rotation is possible
� S-bit controls condition code update

❖ N flag - set if result is negative (N equals bit 31 of result)
❖ Z flag - set if result is zero
❖ C flag - set if there is a carry-out from ALU during arithmetic

operations, or set by shifter
❖  V flag - set in an arithmetic operation if there is an overflow from bit 30

to bit 31.  It is significant only when operands are viewed as 2's
complement signed values
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Data Processing Instruction Binary encoding
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ARM data processing instructions
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Example of data processing instructions

� ADD r5, r1, r3 E081 5003

� ADDNE r0, r0, r0, LSL #2 1090 0100
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Data Transfer Instructions (LDR/STR)
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Data Transfer instructions

� P = 1 means pre-indexed, i.e. modify the address BEFORE use
� P = 0 means post-indexed, i.e. modify the address AFTER use
� B = 1 selects unsigned byte transfer (default is word transfer)
� <offset> may be #+/- 12-bit immediate value (i.e. constant)
� <offset> may also be +/- register
� write-back (or "!") = 1 if the base register is updated
� All the shift parameters are the same as before
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Multiple register transfer instructions

� STMIA r13!,  {r0-r2, r14} E8AD 4007
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Multiply Instructions

� ARM has a number of multiply instructions
❖ Produce product of two 32-bit binary numbers held in registers.
❖ Results of 32-bit*32-bit is 64 bits.  Some ARM processors stores the

entire 64-bit results in registers. Other ARM processors only stores the
LOWER 32-bit products.

❖ Multiply-Accumulate instruction also add product to accumulator value
to form a running total.
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Example of using ARM Multiplier

� This calculates a scalar product of two vectors, 20 long.
� r8 and r9 points two the two vectors
� r11 is the loop counter
� r10 stores results

MOV r11, #20 ; initialize loop counter
MOV r10, #0 ; initialize total

LOOP LDR r0, [r8], #4 ; get first component
LDR r1, [r9], #4 ;   …. and second
MLA r10, r0, r1, r10 ; accumulate product
SUBS r11, r11, #1 ; decrement loop counter
BNE LOOP

MOV r11, #20 ; initialize loop counter
MOV r10, #0 ; initialize total

LOOP LDR r0, [r8], #4 ; get first component
LDR r1, [r9], #4 ;   …. and second
MLA r10, r0, r1, r10 ; accumulate product
SUBS r11, r11, #1 ; decrement loop counter
BNE LOOP
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Multiply with constants

� When multiplying by a constant value, it is possible to replace the
general multiply with a fixed sequence of adds and subtracts that
have the same effect.

� For instance, multiply by 5 could be achieved using a single
instruction:

� This is obviously better than the MUL version:

� What constant multiplication is this?

ADD  Rd, Rm, Rm, LSL #2 ; Rd = Rm + (Rm * 4) = Rm * 5ADD  Rd, Rm, Rm, LSL #2 ; Rd = Rm + (Rm * 4) = Rm * 5

MOV Rs, #5
MUL Rd, Rm, Rs

MOV Rs, #5
MUL Rd, Rm, Rs

ADD r0, r0, r0, LSL #2 ; r0' := 5 x r0
RSB r0, r0, r0, LSL #3 ; r0" := 7 x r0'

ADD r0, r0, r0, LSL #2 ; r0' := 5 x r0
RSB r0, r0, r0, LSL #3 ; r0" := 7 x r0'


