Lecture 8 ARM Instruction Set Architecture

+ In this lecture, we will consider some aspects of ARM instruction
set architecture (ISA) in some details.

¢ We shall consider the format of some instruction codes and their
relationship with the assembly instruction.

¢ We starts with a simple Branch and Branch with Link instruction:

31 2827 252423 0
| cond | 101 |L| 24-bit signed word offset

+ Note that the top 4 bits [31:28] are always used to specify the
conditions under which the instruction is executed.

¢ The L-bit (bit 24) is set if it is a branch with link instruction.
« BL is jump to subroutine instruction - r14 <- return address

& 24-bit signed offset specifies destination of branch in 2's
complement form. It is shifted left by 2 bits to form a word offset.

¢ The range of branch is +/- 32 Mbytes.

pykc - 15-Feb-00 EE2 Computing Spring Term Lecture 8- 1

ARM condition codes fields

Opcode Mnemonic Interpretation Status flag state for
[31:28] extension execution

0000 EQ Equal / equals zero Zset

0001 NE Not equal Z.clear

0010 CS/HS Carry set / unsigned higher or same Cset

0011 CC/LO Carry clear / unsigned lower C clear

0100 MI Minus / negative Nset

0101 PL Plus / positive or zero Nclear

0110 VS Overflow Vet

0111 vC No overflow Vclear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or same C clear or Zset

1010 GE Signed greater than or equal Nequals V

1011 LT Signedless than Nis not equal to V

1100 GT Signed greater than Z clear and N equals V
1101 LE Signed less than or equal Zset or Nis not equal to V
1110 AL Always any

1111 NV Never (do not use!) none

pykc - 15-Feb-00 EE2 Computing Spring Term Lecture 8- 2

Data Processing Instructions

¢ Uses 3-address format: first operand - always register; second
operand - register/shifted register/immediate value; result - always
a register
+ For second register operand, it can be logical/arithmetic/rotate.
This is specified in "shift-type"
¢ How much to shift by is either a constant #shift or a register
For immediate value second operand, only rotation is possible
¢ S-bit controls condition code update
% N flag - set if result is negative (N equals bit 31 of result)
% Zflag - set if result is zero
< C flag - set if there is a carry-out from ALU during arithmetic
operations, or set by shifter
V flag - set in an arithmetic operation if there is an overflow from bit 30
to bit 31. It is significant only when operands are viewed as 2's
complement signed values

>

K3
o

pykc - 15-Feb-00 EE2 Computing Spring Term Lecture 8- 3

Data Processing Instruction Binary encoding

31 28 27 26 2524 212019 1615 12 11 0
|cond |00|#|opcode|S| Rn | Rd | operand 2 |

destination register

first operand register
set condition codes
arithmetic/logic function

- ——————

1
1
1
1
1
1
¥
25 11 8 7 0
e | #rot | 8-bit immediate |
H immediate alignment — H
1 1 76543 0
1
' rmm=======-—a | #shitt [sh]o] rRm |
L
25 : immediate shift length —
@ == shift type
: second operand register T]
: 1 876543
. E A
register shift length —I
pykc - 15-Feb-00 EE2 Computing Spring Term Lecture 8- 4

ARM data processing instructions

Opcode Mnemonic Meaning Effect

[24:21]

0000 AND Logical bit-wise AND Rd:=Rn AND Op2
0001 EOR Logical bit-wise exclusive OR Rd:=Rn EOR Op2
0010 SUB Subtract Rd:=Rn-0Op2

0011 RSB Reverse subtract Rd:=0p2-Rn

0100 ADD Add Rd:=Rn +0p2

0101 ADC Add with carry Rd:=Rn+0Op2 +C
0110 SBC Subtract with carry Rd:=Rn-0p2+C-1
0111 RSC Reverse subtract with carry Rd:=0p2-Rn+C-1
1000 TST Test Scc on Rn AND Op2
1001 TEQ Test equivalence Scc on Rn EOR Op2
1010 CMP Compare Sccon Rn - Op2

1011 CMN Compare negated Sccon Rn + Op2
1100 ORR Logical bit-wise OR Rd:=Rn OR Op2
1101 MoV Move Rd:=0p2

1110 BIC Bit clear Rd:=Rn ANDNOT Op2
1111 MVN Move negated Rd:=NOT Op2

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 5

Example of data processing instructions

31 2827262524

212019 16 15 121

| cond |00 |#|opcode|S| Rn Rd | operand 2
1 T T T
1 76543 0
fmmmmmmmm e = [#shiit [sh]o] rRm]

¢ ADD

+ ADDNE

1
I
: immediate shift length —I
@ -=n shift type
1
|

second operand register

5, r1,r3

r0, rO, rO, LSL #2

E081 5003

1090 0100

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 6

Data Transfer Instructions (LDR/STR)

2827262524 2322212019 16 15 1211

31
| cond

|O1 |#|P|U|B

Ll R | Ra

offset |

base register

load/store

write-back (auto-index)
unsigned byte/word

i
1
1
l
1
1
!
¥

source/destination register:

1
i
I
1
]
I
¥

up/down
pre-/post-index
11 0
---------- > [12bitimmediate |
1
L
11 76543 0

..l #shift |Sh|o| Rm |

immediate shift length —I |
shift type

offset register

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 7

Data Transfer instructions

® 6 ¢ 6 O 0o o

P = 1 means pre-indexed, i.e. modify the address BEFORE use
P = 0 means post-indexed, i.e. modify the address AFTER use
B = 1 selects unsigned byte transfer (default is word transfer)
<offset> may be #+/- 12-bit immediate value (i.e. constant)
<offset> may also be +/- register
write-back (or "I") = 1 if the base register is updated
All the shift parameters are the same as before

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 8

Multiple register transfer instructions

31 2827 25242322212019 1615

Multiply Instructions

| cond [100[PlulsifL] rn |

register list

¢ STMIA

r13!, {r0-r2, r14}

base register

load/store

write-back (auto-index)
restore PSR and force user bit
up/down

pre-/post-index

ESAD 4007

¢ ARM has a number of multiply instructions
< Produce product of two 32-bit binary numbers held in registers.

< Results of 32-bit*32-bit is 64 bits. Some ARM processors stores the
entire 64-bit results in registers. Other ARM processors only stores the
LOWER 32-bit products.

K3
o

to form a running total.

Opcode Mnemonic

Meaning

Multiply-Accumulate instruction also add product to accumulator value

Effect

[23:21]

000 MUL
001 MLA
100 UMULL
101 UMLAL
110 SMULL
111 SMLAL

Multiply (32-bit result)
Multiply-accumulate (32-bit result)
Unsigned multiply long

Unsigned multiply-accumulate long
Signed multiply long

Signed multiply-accumulate long

Rd:=(Rm* Rs)[31:0]
Rd:=(Rm * Rs + Rn) [31:0]
RdHi:RdlLo :=Rm * Rs
RdHi:RdLo +=Rm * Rs
RdHi:Rdlo :=Rm * Rs
RdHi:RdLo +=Rm * Rs

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 9

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 10

Example of using ARM Multiplier

* ¢ o o

r10 stores results

This calculates a scalar product of two vectors, 20 long.
r8 and r9 points two the two vectors
r11 is the loop counter

Multiply with constants

When multiplying by a constant value, it is possible to replace the
general multiply with a fixed sequence of adds and subtracts that
have the same effect.

For instance, multiply by 5 could be achieved using a single

MOV r11, #20

MOV r10, #0
LOOP LDR r0, [r8], #4

LDR r1,[r9], #4 ;

SUBS ri1,r11,#1
BNE LOOP

; initialize loop counter
; initialize total
; get first component

.... and second

MLA r10,r0, r1,r10 ; accumulate product
; decrement loop counter

instruction:

ADD Rd, Rm, Rm, LSL #2

;Rd=Rm + (Rm*4)=Rm *5

¢ This is obviously better than the MUL version:

MOV Rs, #5
MUL Rd, Rm, Rs

¢ What constant multiplication is this?

ADD r0, r0, r0, LSL #2
RSB r0, r0, r0, LSL #3

;10" :=5xr0
;r0" =7 xro0’

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 11

pykc - 15-Feb-00

EE2 Computing

Spring Term Lecture 8- 12

