
Spring Term Lecture 8- 1pykc - 15-Feb-00 EE2 Computing

Lecture 8 ARM Instruction Set Architecture

� In this lecture, we will consider some aspects of ARM instruction
set architecture (ISA) in some details.

� We shall consider the format of some instruction codes and their
relationship with the assembly instruction.

� We starts with a simple Branch and Branch with Link instruction:

� Note that the top 4 bits [31:28] are always used to specify the
conditions under which the instruction is executed.

� The L-bit (bit 24) is set if it is a branch with link instruction.
❖ BL is jump to subroutine instruction - r14 <- return address

� 24-bit signed offset specifies destination of branch in 2's
complement form. It is shifted left by 2 bits to form a word offset.

� The range of branch is +/- 32 Mbytes.

Spring Term Lecture 8- 2pykc - 15-Feb-00 EE2 Computing

ARM condition codes fields

Spring Term Lecture 8- 3pykc - 15-Feb-00 EE2 Computing

Data Processing Instructions

� Uses 3-address format: first operand - always register; second
operand - register/shifted register/immediate value; result - always
a register

� For second register operand, it can be logical/arithmetic/rotate.
This is specified in "shift-type"

� How much to shift by is either a constant #shift or a register
� For immediate value second operand, only rotation is possible
� S-bit controls condition code update

❖ N flag - set if result is negative (N equals bit 31 of result)
❖ Z flag - set if result is zero
❖ C flag - set if there is a carry-out from ALU during arithmetic

operations, or set by shifter
❖ V flag - set in an arithmetic operation if there is an overflow from bit 30

to bit 31. It is significant only when operands are viewed as 2's
complement signed values

Spring Term Lecture 8- 4pykc - 15-Feb-00 EE2 Computing

Data Processing Instruction Binary encoding

Spring Term Lecture 8- 5pykc - 15-Feb-00 EE2 Computing

ARM data processing instructions

Spring Term Lecture 8- 6pykc - 15-Feb-00 EE2 Computing

Example of data processing instructions

� ADD r5, r1, r3 E081 5003

� ADDNE r0, r0, r0, LSL #2 1090 0100

Spring Term Lecture 8- 7pykc - 15-Feb-00 EE2 Computing

Data Transfer Instructions (LDR/STR)

Spring Term Lecture 8- 8pykc - 15-Feb-00 EE2 Computing

Data Transfer instructions

� P = 1 means pre-indexed, i.e. modify the address BEFORE use
� P = 0 means post-indexed, i.e. modify the address AFTER use
� B = 1 selects unsigned byte transfer (default is word transfer)
� <offset> may be #+/- 12-bit immediate value (i.e. constant)
� <offset> may also be +/- register
� write-back (or "!") = 1 if the base register is updated
� All the shift parameters are the same as before

Spring Term Lecture 8- 9pykc - 15-Feb-00 EE2 Computing

Multiple register transfer instructions

� STMIA r13!, {r0-r2, r14} E8AD 4007

Spring Term Lecture 8- 10pykc - 15-Feb-00 EE2 Computing

Multiply Instructions

� ARM has a number of multiply instructions
❖ Produce product of two 32-bit binary numbers held in registers.
❖ Results of 32-bit*32-bit is 64 bits. Some ARM processors stores the

entire 64-bit results in registers. Other ARM processors only stores the
LOWER 32-bit products.

❖ Multiply-Accumulate instruction also add product to accumulator value
to form a running total.

Spring Term Lecture 8- 11pykc - 15-Feb-00 EE2 Computing

Example of using ARM Multiplier

� This calculates a scalar product of two vectors, 20 long.
� r8 and r9 points two the two vectors
� r11 is the loop counter
� r10 stores results

MOV r11, #20 ; initialize loop counter
MOV r10, #0 ; initialize total

LOOP LDR r0, [r8], #4 ; get first component
LDR r1, [r9], #4 ; …. and second
MLA r10, r0, r1, r10 ; accumulate product
SUBS r11, r11, #1 ; decrement loop counter
BNE LOOP

MOV r11, #20 ; initialize loop counter
MOV r10, #0 ; initialize total

LOOP LDR r0, [r8], #4 ; get first component
LDR r1, [r9], #4 ; …. and second
MLA r10, r0, r1, r10 ; accumulate product
SUBS r11, r11, #1 ; decrement loop counter
BNE LOOP

Spring Term Lecture 8- 12pykc - 15-Feb-00 EE2 Computing

Multiply with constants

� When multiplying by a constant value, it is possible to replace the
general multiply with a fixed sequence of adds and subtracts that
have the same effect.

� For instance, multiply by 5 could be achieved using a single
instruction:

� This is obviously better than the MUL version:

� What constant multiplication is this?

ADD Rd, Rm, Rm, LSL #2 ; Rd = Rm + (Rm * 4) = Rm * 5ADD Rd, Rm, Rm, LSL #2 ; Rd = Rm + (Rm * 4) = Rm * 5

MOV Rs, #5
MUL Rd, Rm, Rs

MOV Rs, #5
MUL Rd, Rm, Rs

ADD r0, r0, r0, LSL #2 ; r0' := 5 x r0
RSB r0, r0, r0, LSL #3 ; r0" := 7 x r0'

ADD r0, r0, r0, LSL #2 ; r0' := 5 x r0
RSB r0, r0, r0, LSL #3 ; r0" := 7 x r0'

