
1/1EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• In this lecture,

• we take an overview of the course, and

• briefly review the C++ programming
language.

• The rough C++ guide is not very complete.
You should use a suitable book as a proper
reference for the C++ language.

Professor Peter Cheung
EEE, Imperial College

1/2EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• The aim of this course is to familiarise you with a
number of principles, concepts and techniques from
computer science.

• These principles, concepts and techniques are general
purpose. They apply

• whatever programming language you use (Java,
C++, Pascal), and

• whatever computer you’re using (a PC, a Unix
system, a Mac).

• Once you know basic engineering principles, concepts
and techniques you’ll find it easy to pick up new
programming languages, new operating systems, etc.

1/3EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• You could get away with nothing. But a good C++
textbook would help, such as:

Problem Solving with C++, 5th Edition, Walter
Savitch, Addison Wesley, ISBN: 0321269756, 2004
(£40.84).

• You can also get a full C++ Tutorial free on the web at:

Code Complete, Steve McConnell, Microsoft
Press, ISBN: 0735619670 (£25.84).

http://www.functionx.com/cppbcb/

• If you are serious about learning really how to
programme well, then the following book (language
independent) is a must:

1/4EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• The principles you will learn include things like
how to construct code that’s easy to read,
understand and modify.

• The concepts you will learn about include things
like abstract data types, object-oriented
programming, and so on.

• The techniques you will learn about include

• how to build data structures, like lists and
trees, and

• algorithms for certain common tasks, like
lookup and sorting.

1/5EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• But general-purpose programming principles,
concepts and techniques can only be acquired by
doing lots of programming.

• Programming is like riding a bike — it can’t be learned
from a book, it requires lots of practise.

• So we have to learn via a particular programming
language on a particular machine.

• On this course we use C++ using Borland C++
Builder (BCB).

1/6EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• The C++ language — is an object-oriented variant of the C
language.

• “Object-oriented” means that code and data can be
bundled together into a single entity called an object.
Classes of objects are organised into hierarchies. More
on this later in the course.

• But Borland C++ Builder (BCB) is not just a programming
language. It’s a whole development environment (IDE). It
includes an editor and a debugger, as well as a
compiler.

• BCB is also a visual development environment. It supplies
lots of support for building the graphical user interface
(GUI) of a program. It contains a Visual C++ Library (VCL)
which helps you to write visual programmes.

1/7EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• The course will touch on each of the following topics.

• A review of C++

• Software engineering principles

• Data structures

• Lists

• Ordered lists

• Trees

• Ordered trees

• Hash tables

• Parsing

• Object-orientation

1/8EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• C++ is a programming language.

• It is a

• block structured,

• strongly typed,

• procedural language.

• It’s a lot like C or Pascal or Java, but arguably
more flexible and more widely used than
others.

1/9EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• “Block structured” means that the flow of control in a program is
strictly mediated by a small number of constructs, namely

• sequences of statements,

• conditional statements (e.g. if (<condition>) then
{<statements>} else {<statement>}), and

• loops (e.g. while condition {<statement>}).

• “Strongly typed” means that the programmer has to declare the
type of each variable used in the program, ie: whether it is an integer,
a string, an array, or whatever.

• “Procedural” means that the program specifies a series of
instructions and the order in which they are to be carried out. In a
declarative language, by contrast, the programmer only describes the
meanings of things — functions or predicates — and leaves it to the
computer to work out the details of how computations are to be
performed. Prolog is an example of a declarative language.

1/10EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• Here is a skeleton program in C++. (This is a
console program. It doesn’t use the fancy user
interface features of BCB.)

#include <iostream.h>

int main()

{
 cout << “Hello, World!”;
 cout << endl;
 getchar();
 return 0;
}

• This include statement specifies
the header file iostream.h to
be used. It defines standard i/o
cin and cout.

• All C++ programs begin with a
line of this form. It always starts
with main().

• All C++ statements are
terminated by a semicolon.

• When exit, the main programme
returns a value 0 to signify no
error has occurred.

1/11EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

Comments are placed between /* and */
/* This is a

comment */

The second method: a comment is placed after //.
Then it extends to the end of the line:

x = x+1; // A comment to the end of the line.

Comments are placed
between braces:
{ This is a

comment }

The older notation:
(* This is a

comment *)

C++Pascal

Extracts from “Pascal and C++ Side by Side”, Maria Litvin. (http://www.skylit.com/pascpp/)

1/12EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

C++ is case-sensitive.PASCAL IS CASE-BLIND.

C++Pascal

Names can use letters, digits and the underscore
character, but must begin with a letter or the
underscore, e.g.:

amount, x1_, _str3a

Names can use letters and digits
but must begin with a letter,
e.g.:

amount, x1, str3a

C++Pascal

1/13EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

A compound statement is placed
between braces:

{
<statement1> ;
<statement2> ;

}

Semicolon is required before the closing
brace, and usually omitted after it.

A compound statement is placed
between begin and end:

begin
<statement1> ;
<statement2>

end;

Semicolon is optional before end and
is usually required after end, unless
followed by another end.

C++Pascal

1/14EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

char
int long short
float double long double

char, int, short, and long may be
preceded by the unsigned keyword.
double is a double-precision real
number.
bool is in the process of becoming
standard.

char
integer
real
boolean

C++Pascal

enum Color {Red, Green, Blue};type
Color = (Red, Green, Blue);

C++Pascal

1/15EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

Declarations of constants are the same as declarations of
variables with initialization, but they are preceded by the
keyword const:
const double Pi = 3.14,

Rate = .05; // or 0.05;
const int Hour = 3600;
const char Dollar = '$';
const char Greeting[] = "Hello, World!";
// Also allowed:
const double R = 5., Pi = 3.14, Area = Pi * R * R;

C++ recognizes so-called "escape characters" for special
char constants. These are written as a backslash (which
serves as the "escape" character) followed by some
mnemonic char. For example
'\n' newline '\'' single quote
'\\' backslash '\"' double quote
'\a' alarm (bell) '\f' form feed
'\t' tab '\r' carriage return

Character constants with escape chars are used the same
way as regular char constants. For example:
const char CR = '\r'; // Carriage Return
cout << "Hello, World\n";

All declarations of constants in the
main program or in a procedure or
a function are grouped together
under the keyword const:
const
Pi = 3.14;
Rate = 0.05; {.05 not

allowed }
Hour = 3600;
Dollar = '$';
Greeting = 'Hello, World!';

There are no "escape" characters.
Two single quotes in a row in a
literal string represent one single
quote character:
writeln ('Let''s have fun!');

C++Pascal

1/16EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

Declarations of variables (or constants) may
be placed more or less anywhere in the code,
before they are used. Beginners are advised
to place them at the top of main() or at the
top of a function to avoid complications with
the scope rules. Global variables, declared
outside any function (and outside main()),
are allowed, but should be avoided. Values
of variables may be initialized to constants or
previously defined variables or expressions:

SomeFunction (...)
{

double r = 5.;
int i = 0, j = i+1;
char star = '*';
...

}

All declarations of variables in the
main program or in a procedure or a
function are grouped together under
the keyword var:

SomeProcedure (...);
...
var

r : real;
i, j : integer;
star : char;
match : boolean;
...

begin
...

end;

No initialization is allowed in
declarations.

C++Pascal

1/17EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

char str[80];
int grid[32][25];

The subscript for the first element of the
array is 0. Here str[0] refers to the first
element of the array str and str[79] to
the last element. C++ compilers do not
verify that a subscript value is within the
legal range.

Arrays can be initialized in declarations.
For example:

int fibonacciNumbers[6] =
{1,1,2,3,5,8};
char phrase[80] = "Hello, World!";

var
str : packed array [1..80] of

char;
grid : array [1..32, 1..25] of

integer;

The packed keyword is recommended
for an array of characters to save space.
The range of subscripts can start from any
number, but usually starts from 1. Here
str[1] refers to the first element of the
array str. Pascal compilers normally
report an error if a subscript value is out
of range.

C++Pascal

1/18EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

The type keyword is used to define enumerated and subrange types, array types,
and records:

type
DigitType = 0..9; { Subrange type }
ColorType = (Red, Green, Blue); { Enumerated type }
WordType = packed array [1..30] of char; { Array type }

Pascal

The typedef keyword is used to define aliases for built-in (and, if desired,
user-defined) types:

// Used later in declarations as:
typedef unsigned char BYTE; // BYTE pixel;
typedef double MONEY; // MONEY price = 9.95;
typedef int BOARD[8][8]; // BOARD board;

C++

1/19EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

Procedures and functions take arguments of specified types. Procedures do not
explicitly return a value. Functions return a value of the specified type.

procedure DoSomething (arg1 : integer; arg2 : char);
...

begin
...

end;
{**}
function ComputeSomething (arg1, arg2 : integer) : real;
...

begin
...
ComputeSomething := <expression>;

end;

The return value in a function is indicated by using the assignment statement.

Pascal

1/20EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

There are no procedures, everything is a function. Functions take arguments of
specified types and return a value of the specified type. Functions that do not
explicitly return a value are designated as void functions.

void DoSomething (int arg1, char arg2)
{
...

}

Functions of the type other than void return a value of the specified type. The return

value is indicated by using the return statement.
double ComputeSomething (int arg1, int arg2)
{

...
return <expression>;

}
A function can have multiple return statements. A void function can have return
statements without any value to return.

if (<condition)>)
return;

...

This is used to quit early and return to the calling statement.

C++

1/21EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

The var keyword is used (passing parameter by reference), or without var
(passing parameter by value) :

procedure Swap (var x, y : integer);
procedure QuadraticEquation (a, b, c : real; var x1, x2 : real);

Pascal

The & symbol is used:

void Swap (int &x, int &y);
void QuadraticEquation (double a, double b, double c,

double &x1, double &x2);

C++

1/22EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

:= (assignment)
+
–
*
/ ("real" division)

div ("integer" division)
mod (modulo division)

Arithmetic operations are allowed only for integer and real operands. div and mod
are used only with integer operands. No arithmetic operation are allowed for variables
of the char or boolean types.

The result of an arithmetic operation has integer type when both operands have
integer type and real when at least one of the operands is real. The "real" division /
is an exception: the result is always a real value, even if operands are integers.
The result of div is the quotient truncated to an integer (in the direction of 0).
Examples:

var
x : real;
n : integer;

...
x := 2 / 3; { x gets the value of 0.666667 }
n := 2 div 3; { n gets the value of 0 }

Pascal

1/23EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

= (assignment)
+
–
*
/
% (modulo division).

Arithmetic operations are allowed for all built-in types, including char, although %
makes sense only for integral types (char, int, long, short, etc.). char
operands use the actual binary value stored in that byte and have a range from –127
to 127. They are first automatically converted to int in arithmetic operations.

The intermediate type of the result is always the same as the type of the operands. If
the operands have different types, the "shorter" operand is first promoted to the type
of the "longer" operand (e.g. int may be promoted to long; or long to double).
Examples:

double x;
...

x = 2. / 3; // x gets the value of 0.666667
x = 2 / 3; // x gets the value of 0 (!!!)

C++

1/24EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

The compound arithmetic operators are very much a part of the C++
style and are widely used.

// Is the same as:
a++; // a = a + 1;
b = a++; // {b = a; a = a + 1;}
b = ++a; // {a = a + 1; b = a;}
a––; // a = a – 1; Also: ––a;
a += b; // a = a + b; Also: a –=b; a *= b; a /= b; a %= b;

No such
thing.

C++Pascal

1/25EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

Standard library functions (require #include
<math.h>):

int abs(int x); double fabs(double x);
double sqrt(double x);
double sin(double x);
double cos(double x);
double exp(double x);
double log(double x); // Natural logarithm
double pow(double base, double exponent);
double atan(double x);

Built-in functions:

abs(x)
sqrt(x)
sin(x)
cos(x)
exp(x)
ln(x)
sqr(x)
arctan(x)

C++Pascal

1/26EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

Any integer non-zero value is treated as "true," and zero as
"false." bool type is in the process of becoming standard.
If not supported by their compiler, programmers may use
their own definition. For example:

typedef int bool;
#define false 0
#define true 1

Has built-in boolean
type and constants true
and false.

C++Pascal

The result has the type bool and has the value
false or true:

==
!=
<
<=
>
>=

The result of relational operators
has the type boolean.

=
<>
<
<=
>
>=

C++Pascal

1/27EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

and
or
not

Example:
function LeapYear(yr : integer) : boolean;

begin
LeapYear := ((yr mod 4 = 0) and

((yr mod 100 <> 0) or (yr mod 400 = 0)));
end;

Pascal

&&
||
!

Example:
bool LeapYear (int yr)
{

return (yr % 4 == 0 &&
(yr % 100 != 0 || yr % 400 == 0));

}

C++

1/28EE2/ISE1 Algorithms & Data Structures

PYKC Jan 2006

• Use Level 3 computer lab or install a copy of BCB on
your own machine.

• Complete Lesson 1 & Lesson 2 of the following C++
Tutorial on the web:

http://www.functionx.com/cppbcb/Lesson01.htm

http://www.functionx.com/cppbcb/Lesson02.htm

