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IIR Filters

• Advantages of IIR filters
• Standard Filter shapes and z-domain Transformations
• Effect of Coefficient errors and use of Biquads
• Alternative Signal-flow Graphs
• C implementation and the #include directive
• Circular Buffer Implementation
• Summary
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IIR Filters

• Advantages
– Fewer coefficients for sharp cutoff filters
– Can calculate coefficients for standard filters
– Can apply transformations to frequency axis
– Can make all-pass filters (if bi = aN–i )

• Disadvantages
– Non-linear phase response
– Can be unstable: adaptive filters difficult, coefficient precision vital
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Filter Sharpness

• 21st order FIR, 54th order FIR and 6th order IIR
• IIR filter has steepest cutoff but very non-linear phase

– Linear phase (φ= –ωτ) ⇔ pure delay of τ ⇔ Symmetrical FIR
– The 180º phase jumps arise when the response changes sign
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Sharpness & Impulse Response

• Truncating the impulse response to N samples:
– convolves the frequency response with a Dirichlet function 

(aliased sinc)
– smears out sharp frequency-domain transitions
– A step transition will now cover a frequency range of fsamp /N
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Standard Filters
• Standard filters have specifiable ripple in passband and/or 

stopband:
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Frequency Transformations

• If we replace       by                  we apply a non-linear 

frequency transformation.

• Choose                                            to map f1 to f2
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• Similar transformations map lowpass to highpass,  bandpass or bandstop
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Coefficient Precision

• Reducing coefficient precision to 33 bits (10 significant 
digits) causes severe instability + wrong filter shape.

• Required precision increases rapidly for high order filters.
• Solution: factorize filter transfer function into 2nd order 

factors.

Pole/Zero positions
52 bit coefficients

12th order bandpass filter Pole/Zero positions
33 bit coefficients
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Filter Implementation

• Note the sign change of denominator coefficients
• We can factorize H(z) and implement as cascaded filters:
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Transfer Function:

Recurrence Relation:
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Direct Form I and II
• Direct Form I

– FIR followed by IIR
– D represents a one-sample delay

(multiplication by z–1)
– We can merge the adders.
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– IIR followed by FIR
– Only needs a single delay line
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Transpose Networks
• The transfer function is unchanged if you:

– Reverse the flow in each branch
– Interchange branch divisions and branch summations

• Coding can be slightly more efficient
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Biquad Implementation
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• We can always factorise the numerator and denominator of H(z) into quadratic 
factors with real coefficients.

• Each complex pole-pair or zero-pair forms a single factor.
• Group nearby pole and zero pairs to form 2nd-order sections known as biquads.
• 2nd-order filters are much less sensitive to coefficient errors.
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C Code for IIR Filters

• Software implementation of Direct Form I
• The diagram illustrates the case: order = 3

• We access the delay lines in reverse order so that we can 
update their values in the second line of the loop.

• w[1] and v[1] are updated with junk in the final iteration, 
then overwritten with their correct values outside the loop. 

yout = b[0]*xin;
for (k=order; k>0; k--) {

yout += w[k]*b[k]-v[k]*a[k];
w[k] = w[k-1];  v[k] = v[k-1];
}

w[1]=xin; v[1]=yout;
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Coefficient File

• Get MATLAB to create a file: coef.txt

– See the fopen(), fprintf() and fclose() commands

• The comma after the last value in each array is optional
• The length of each array is determined by the number of 

values specified.
• In C, arrays go from a[0] … a[order] whereas in MATLAB, 

they go from a(1) … a(order+1).

float a[ ] = {      1,     -1.76,    1.1829,    -0.2781,};
float b[ ] = {   0.0181,    0.0543,    0.0543,    0.0181,};
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Initialisation

• To get the number of values the a[ ] array, we divided the length (in 
bytes) of the whole array by the length of each element.

• The filter order is one less than the number of a[ ] values.
• Array names like w and v are pointers (i.e. they just store a memory 

address).
• Use calloc() to reserve an area of memory, initialize its contents to 0

and to set w to its starting address.
• Our code needs the length of  w and v to be one greater than the order.

int order;
float *w, *v; 
#include "coef.txt"

order=sizeof(a)/sizeof(a[0]) - 1;
w = (float *) calloc(order+1, sizeof(float)); 
v = (float *) calloc(order+1, sizeof(float));
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Circular Buffer

• In the diagram, M is the value of m as we enter the loop.
• With ++m, we increment m each time through the loop and ensure that 

it never exceeds order-1. 
• The final line overwrites the oldest values in the delay line and then 

decrements m so that they will act as w[M+1] and v[M+1] next time.
• The w and v arrays only need to contain order elements.

yout = b[0]*xin;
for (k=1; k<=order; k++) { 

if (++m >= order) m=0;
yout += w[m]*b[k]-v[m]*a[k];
}

w[m]=xin; v[m--]=yout;
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Circular Buffer

• The table shows the value of m used in each loop iteration.
• M is the starting value as we initially enter the loop.
• The value of m from the final iteration determines the 

storage location: w[m]=xin and v[m]=yout.
• We then decrement m to provide M for the next sample
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Summary
• IIR filters

– Need fewer coefficients for sharp cut-off filters
– Poles and zeros of standard filters can be calculated directly
– z-domain transformations can change the cutoff-frequency and 

transform lowpass into highpass or, with a doubling of the order, 
into pandpass or bandstop.

• Alternative Signal-flow Graphs
– Important differences in numerical performance when fixed point 

arithmetic is used - less important with floating point.
– Factorize into biquads to avoid coefficient precision problems.

• C implementation
– Use #include directive to insert a coefficient file into program.
– Can use circular buffer to implement an efficient delay line.


