
DSPC6x Real-Time Signal Processing 05/06/2001

IIR Filters 1

05/06/2001 IIR Filters

1

IIR Filters

• Advantages of IIR filters
• Standard Filter shapes and z-domain Transformations
• Effect of Coefficient errors and use of Biquads
• Alternative Signal-flow Graphs
• C implementation and the #include directive
• Circular Buffer Implementation
• Summary

05/06/2001 IIR Filters

2

IIR Filters

• Advantages
– Fewer coefficients for sharp cutoff filters
– Can calculate coefficients for standard filters
– Can apply transformations to frequency axis
– Can make all-pass filters (if bi = aN–i)

• Disadvantages
– Non-linear phase response
– Can be unstable: adaptive filters difficult, coefficient precision vital

N
N

M
N

zaza
zbzbbzH −−

−−

+++
+++=

l

l

1
1

1
10

1
)(

05/06/2001 IIR Filters

3

Filter Sharpness

• 21st order FIR, 54th order FIR and 6th order IIR
• IIR filter has steepest cutoff but very non-linear phase

– Linear phase (φ= –ωτ) ⇔ pure delay of τ ⇔ Symmetrical FIR
– The 180º phase jumps arise when the response changes sign

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

20

Normalized Angula r Freque ncy (×π rads /sample)

M
ag

ni
tu

de
 (d

B
)

0 0.2 0.4 0.6 0.8 1
-1000

-800

-600

-400

-200

0

Normalized Angula r Freque ncy (×π rads /sample)

P
ha

se
 (d

eg
re

es
)

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

20

Normalize d Angula r Fre quency (×π ra ds /sa mple)

M
ag

ni
tu

de
 (d

B
)

0 0.2 0.4 0.6 0.8 1
-2500

-2000

-1500

-1000

-500

0

Normalize d Angula r Fre quency (×π ra ds /sa mple)

P
ha

se
 (d

eg
re

es
)

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

20

Norma lized Angula r Fre quency (×π rads/sa mple)

M
ag

ni
tu

de
 (d

B
)

0 0.2 0.4 0.6 0.8 1
-400

-300

-200

-100

0

100

Norma lized Angula r Fre quency (×π rads/sa mple)

Ph
as

e
(d

eg
re

es
)

05/06/2001 IIR Filters

4

Sharpness & Impulse Response

• Truncating the impulse response to N samples:
– convolves the frequency response with a Dirichlet function

(aliased sinc)
– smears out sharp frequency-domain transitions
– A step transition will now cover a frequency range of fsamp /N

-5 -4 -3 -2 -1 0 1 2 3 4 5
-60

-50

-40

-30

-20

-10

0

×fsamp/N

05/06/2001 IIR Filters

5

Standard Filters
• Standard filters have specifiable ripple in passband and/or

stopband:

0 0.1 0.2 0.3 0.4 0.5

-35

-30

-25

-20

-15

-10

-5

0

dB

Freque ncy (Hz)
0 0.1 0.2 0.3 0.4 0.5

-35

-30

-25

-20

-15

-10

-5

0

dB

Freque ncy (Hz)

0 0.1 0.2 0.3 0.4 0.5

-35

-30

-25

-20

-15

-10

-5

0

dB

Freque ncy (Hz)

0 0.1 0.2 0.3 0.4 0.5

-35

-30

-25

-20

-15

-10

-5

0

dB

Freque ncy (Hz)

Butterworth Elliptic

Chebyshev Inverse
Chebyshev

05/06/2001 IIR Filters

6

Frequency Transformations

• If we replace by we apply a non-linear

frequency transformation.

• Choose to map f1 to f2

z
z

z
α
α

−
−

1

()()
()()π

πα
Tff
Tff

21

21

sin
sin

+
−=

0 0.1 0.2 0.3 0.4 0.5

-35

-30

-25

-20

-15

-10

-5

0

dB

Fre que ncy (Hz)
0 0.1 0.2 0.3 0.4 0.5

-35

-30

-25

-20

-15

-10

-5

0

dB

Freque ncy (Hz)

α = –0.618

• Similar transformations map lowpass to highpass, bandpass or bandstop

DSPC6x Real-Time Signal Processing 05/06/2001

IIR Filters 2

05/06/2001 IIR Filters

7

Coefficient Precision

• Reducing coefficient precision to 33 bits (10 significant
digits) causes severe instability + wrong filter shape.

• Required precision increases rapidly for high order filters.
• Solution: factorize filter transfer function into 2nd order

factors.

Pole/Zero positions
52 bit coefficients

12th order bandpass filter Pole/Zero positions
33 bit coefficients

0.6 0.8 1 1.2 1.4

-0.4

-0.2

0

0.2

0.4

Z Doma in

0.6 0.8 1 1.2 1.4

-0.4

-0.2

0

0.2

0.4

Z Doma in

0 0.1 0.2 0 .3 0 .4 0.5

-60

-50

-40

-30

-20

-10

0

dB

Frequency (Hz)

05/06/2001 IIR Filters

8

Filter Implementation

• Note the sign change of denominator coefficients
• We can factorize H(z) and implement as cascaded filters:

N
N

M
N

zaza
zbzbbzH −−

−−

+++
+++=

�

�

1
1

1
10

1
)(

)()1(
)()1()()(

1

10

Nnyanya
Mnxbnxbnxbny

N

N

−−−−−
−++−+=

�

�

N
N

M
N zaza

zbzbbzH −−
−−

+++
×+++=

�

� 1
1

1
10 1

1)(

Transfer Function:

Recurrence Relation:

05/06/2001 IIR Filters

9

Direct Form I and II
• Direct Form I

– FIR followed by IIR
– D represents a one-sample delay

(multiplication by z–1)
– We can merge the adders.

+

D

D

D

b1

b2

b3

b0xin yout

D

+

D

D

–a1

–a2

–a3

D

+

D

D

–a1

–a2

–a3

xin
+

D

D

D

b1

b2

b3

b0 yout• Direct Form II
– IIR followed by FIR
– Only needs a single delay line

05/06/2001 IIR Filters

10

Transpose Networks
• The transfer function is unchanged if you:

– Reverse the flow in each branch
– Interchange branch divisions and branch summations

• Coding can be slightly more efficient

+

D

+

D

D

–a1

–a2

–a3

b1

b2

b3

b0xin yout
+

D
–a1

–a2

–a3

b1

b2

b3

b0 xinyout

+

D

+

D

+

b0

Direct Form II

Direct Form II Transposed

05/06/2001 IIR Filters

11

Biquad Implementation

+

D

+

D

–a11

–a12

b11

b12

xin g
+

yout
+

D

D

–a21

–a22

b21

b22

2
2

1
1

2
2

1
1

2
12

1
11

2
12

1
11

1
1

1
1)(−−

−−

−−

−−

++
++××

++
++×=

zaza
zbzb

zaza
zbzbgzH

KK

KK
�

• We can always factorise the numerator and denominator of H(z) into quadratic
factors with real coefficients.

• Each complex pole-pair or zero-pair forms a single factor.
• Group nearby pole and zero pairs to form 2nd-order sections known as biquads.
• 2nd-order filters are much less sensitive to coefficient errors.

05/06/2001 IIR Filters

12

C Code for IIR Filters

• Software implementation of Direct Form I
• The diagram illustrates the case: order = 3

• We access the delay lines in reverse order so that we can
update their values in the second line of the loop.

• w[1] and v[1] are updated with junk in the final iteration,
then overwritten with their correct values outside the loop.

yout = b[0]*xin;
for (k=order; k>0; k--) {

yout += w[k]*b[k]-v[k]*a[k];
w[k] = w[k-1]; v[k] = v[k-1];
}

w[1]=xin; v[1]=yout;

+

D

D

D

b1

b2

b3

b0xin yout

D

D

D

–a1

–a2

–a3

w[1]

w[2]

w[3]

v[1]

v[2]

v[3]

DSPC6x Real-Time Signal Processing 05/06/2001

IIR Filters 3

05/06/2001 IIR Filters

13

Coefficient File

• Get MATLAB to create a file: coef.txt

– See the fopen(), fprintf() and fclose() commands

• The comma after the last value in each array is optional
• The length of each array is determined by the number of

values specified.
• In C, arrays go from a[0] … a[order] whereas in MATLAB,

they go from a(1) … a(order+1).

float a[] = { 1, -1.76, 1.1829, -0.2781,};
float b[] = { 0.0181, 0.0543, 0.0543, 0.0181,};

05/06/2001 IIR Filters

14

Initialisation

• To get the number of values the a[] array, we divided the length (in
bytes) of the whole array by the length of each element.

• The filter order is one less than the number of a[] values.
• Array names like w and v are pointers (i.e. they just store a memory

address).
• Use calloc() to reserve an area of memory, initialize its contents to 0

and to set w to its starting address.
• Our code needs the length of w and v to be one greater than the order.

int order;
float *w, *v;
#include "coef.txt"

order=sizeof(a)/sizeof(a[0]) - 1;
w = (float *) calloc(order+1, sizeof(float));
v = (float *) calloc(order+1, sizeof(float));

05/06/2001 IIR Filters

15

Circular Buffer

• In the diagram, M is the value of m as we enter the loop.
• With ++m, we increment m each time through the loop and ensure that

it never exceeds order-1.
• The final line overwrites the oldest values in the delay line and then

decrements m so that they will act as w[M+1] and v[M+1] next time.
• The w and v arrays only need to contain order elements.

yout = b[0]*xin;
for (k=1; k<=order; k++) {

if (++m >= order) m=0;
yout += w[m]*b[k]-v[m]*a[k];
}

w[m]=xin; v[m--]=yout;

+

D

D

D

b1

b2

b3

b0xin yout

D

D

D

–a1

–a2

–a3

w[M+1]

w[M+2]

w[M+3]

v[M+1]

v[M+2]

v[M+3]

05/06/2001 IIR Filters

16

Circular Buffer

• The table shows the value of m used in each loop iteration.
• M is the starting value as we initially enter the loop.
• The value of m from the final iteration determines the

storage location: w[m]=xin and v[m]=yout.
• We then decrement m to provide M for the next sample

………0

1021

210–1

0210

k=2k=2k=1M

05/06/2001 IIR Filters

17

Summary
• IIR filters

– Need fewer coefficients for sharp cut-off filters
– Poles and zeros of standard filters can be calculated directly
– z-domain transformations can change the cutoff-frequency and

transform lowpass into highpass or, with a doubling of the order,
into pandpass or bandstop.

• Alternative Signal-flow Graphs
– Important differences in numerical performance when fixed point

arithmetic is used - less important with floating point.
– Factorize into biquads to avoid coefficient precision problems.

• C implementation
– Use #include directive to insert a coefficient file into program.
– Can use circular buffer to implement an efficient delay line.

