
C6x Real-Time DSP 06/06/2001

Spectral Subtraction 1

06/06/2001 Spectral Subtraction

1

Speech Enhancement

• Spectral subtraction principles
• Overlap-add processing

– Windowing
– Oversampling

• Noise subtraction
• Noise estimation

– Minimisation buffers

• Output Buffers

06/06/2001 Spectral Subtraction

2

Spectral Subtraction

• Processing is entirely in the frequency domain
– Estimate noise spectrum when the speaker is silent
– Assume the noise spectrum doesn’t change rapidly
– Subtract the noise spectrum from the input signal
– Convert back into the time domain to generate the output

FFT Subtract
Noise Spectrum

Inverse
FFT

Estimate
Noise Spectrum

x(n) y(n)Y(ω)X(ω)

|N(ω)|

06/06/2001 Spectral Subtraction

3

Overlap-Add Processing

Input Waveform

Input Frames

Processed frames

Add to give output

Input Window

Output Window

Extract Frame

Multiply by window

(1) DFT
(2) Process Frame
(3) Inverse DFT

Multiply by window

Add onto
neighbouring frames

06/06/2001 Spectral Subtraction

4

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

w
(k

) a
nd

 w
2 (k

)

Input and Output Windows
• Each frame is multiplied by the input window and then by

the output window.

()() 1,,0for /12cos85185.01)(−=+−= NkNkkw mπ

– Need the windows to avoid
spectral artifacts from
discontinuities at the frame
boundaries.

– Choose the windows so that the
overlapped windows sum to a
constant.

– Square root of Hamming
window:

w2(k)

w(k)

06/06/2001 Spectral Subtraction

5

Frame Length and Oversampling
• Frame length is a compromise

– Long frames give good frequency resolution but poor time
resolution (and normally require more processing)

– Short frames give good time but poor frequency resolution
– FFT is more efficient if length is a power of 2
– We choose a length of 256 = 32 ms @ 8 kHz

• Each frequency bin is sampled once per frame
– Need to sample fast enough to avoid aliassing if the magnitude of a

frequency component changes rapidly.
– Frequency component amplitude changes are smoothed by the

input/output windows
– For Hamming window 4× over-sampling (a 75% overlap) is best

but we can get away with 2× over-sampling (a 50% overlap) if
processing power is in short supply.

06/06/2001 Spectral Subtraction

6

Subtracting Noise Spectrum
• If we knew the phase of the noise: Y X N() () ()ω ω ω= −

• Since we don’t, we subtract magnitudes (or else powers):

)()(
)(
)(

1)(
)(

)()(
)()(ωω

ω
ω

ω
ω

ωω
ωω gX

X
N

X
X

NX
XY ×=

−×=

−
×=

• g(ω) can go negative if our estimated noise exceeds the
input signal. Hence we limit g(ω) to some minimum:

−=

)(
)(

1,max)(
ω
ω

λω
X
N

g

C6x Real-Time DSP 06/06/2001

Spectral Subtraction 2

06/06/2001 Spectral Subtraction

7

Estimating the Noise
• Very hard to detect reliably when speaker is silent
• Instead, assume that he stops for a bit at least every 10 sec

– At each frequency, take the minimum power over the past 10 sec
– Multiply by a compensation factor (α ≈ 2) to estimate the average

noise amplitude as opposed to the minimum.

• Method 1: Store all speech spectra over the past 10 sec
– Too much storage: 625 or 1250 frames depending on overlap
– Too much calculating to find the minimum

• Method 2: Calculate the minimum of each 2.5 sec chunk
– Take the minimum of the current and three previous chunks at

each frequency separately.
– Not so accurate but much less storage & computation

06/06/2001 Spectral Subtraction

8

Minimum Buffers

• We always take the minimum of M1, M2, M3 and M4.
• This corresponds to an interval of between 7½ and 10 sec.
• Every 2½ sec we transfer M3→M4, M2 →M3, M1 →M2 and then

reinitialise M1 to the current input frame.

Time = 11

ADC

M2 M1M3M4

312 frames
(2½ sec)

Time (sec)

M2 M1M3M4

M2 M1M3M4

0 2½ 5 7½ 10 12½ 15

Time = 12

Time = 13

• M2, M3 and M4 each
hold a complete
spectrum that is the
minimum over a 2½
sec interval.

• M1 contains the
minimum spectrum
of the frames since
the last chunk
boundary.

06/06/2001 Spectral Subtraction

9

Input/Output Buffers

• The last 64 samples of our result frame doesn’t have any previous data
to add on to, so we just overwrite the previous buffer contents.

• Use 1¼ frame circular buffers for input and output
• We have a 1¼ frame algorithmic delay (independent of processor

speed) from input→output.

Input Buffer

Output Buffer

ADC

DAC

256 sample frame

Overwrite existing
buffer contents

• 4× oversampling ⇒
we must process a
256-sample frame
while ADC reads in
the next 64 samples.

• Since frames overlap,
we must add results
onto those from
previous frames.

