Based on slides/material by...

Topic 12		 J. Rabaey http 	ttp://cas.ee.ic.ac.uk/~kostas ://bwrc.eecs.berkeley.edu/Classes/IcBook/ins ted Circuits: A Design Perspective", Prentice	
Testing Peter Y. K. Cheung Department of Electrical & Electronic Engineering Imperial College London		Weste and Ha Perspective", A Recommended R ◆ J. Rabaey et. a	//www.cmosvlsi.com/coursematerials.html rris, "CMOS VLSI Design: A Circuits and Syst Addison Wesley eading: al. "Digital Integrated Circuits: A Design Pers dology Insert H	
URL: http://www.ee.ic.ac.uk/pcheung		 Weste and Ha Perspective": (rris, "CMOS VLSI Design: A Circuits and Syst Chapter 9	tems
Digital Integrated Circuit Design	Topic 12 - 1	Design for Test	Digital Integrated Circuit Design	Topic 12 - 2
Testing			Logic Verification	

- Testing is one of the most expensive parts of chips
 - Logic verification accounts for > 50% of design effort for many chips
 - Debug time after fabrication has enormous opportunity cost
 - Shipping defective parts can sink a company
- Example: Intel FDIV bug
 - Logic error not caught until > 1M units shipped
 - Recall cost \$450M (!!!)

- Does the chip simulate correctly?
 - Usually done at HDL level
 - · Verification engineers write test bench for HDL
 - Can't test all cases
 - Look for corner cases
 - Try to break logic design
- Ex: 32-bit adder
 - Test all combinations of corner cases as inputs:
 - ► 0, 1, 2, 2³¹-1, -1, -2³¹, a few random numbers
- Good tests require ingenuity

Design for Test

Silicon Debug

Shmoo Plots

 Test the first chips back from fabrication If you are lucky, they work the first time If not Logic bugs vs. electrical failures Most chip failures are logic bugs from inadequate simulation Some are electrical failures Crosstalk Dynamic nodes: leakage, charge sharing Ratio failures A few are tool or methodology failures (e.g. DRC) 			How to diagnose failures? Hard to access chips Picoprobes Electron beam Laser voltage probing Built-in self-test Shmoo plots Vary voltage, frequency Look for cause of electrical failures	Fininge on the 4 * in 1.1 * * * * * * * * * * * * * * * * * *	h (A), fragmeny increase going at tatam, increase (A) a right dicates a folder: 1.0	
 Fix the bugs and fabricate a corrected chip 				Walf Fals at 1 certain what Coupling, charge share, races	"Revene speadpath" Increase in voltage rokeves frasquarey Speedpath, kolago 1.0 1.2 1.2 1.2 1.4 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	
asign for Test Digital Integrated Circuit Design	Topic 12 - 5	Design fo	r Test	Digital Integrated Circuit Design		Topic 1

Manufacturing Test

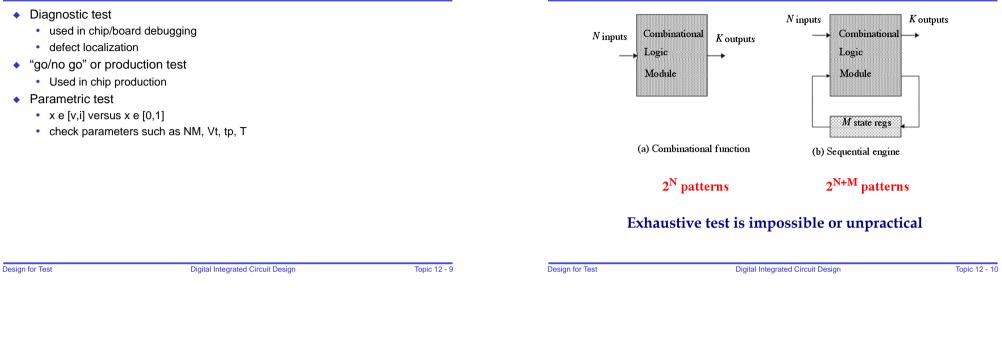
- A speck of dust on a wafer is sufficient to kill chip
- *Yield* of any chip is < 100%
 - Must test chips after manufacturing before delivery to customers to only ship good parts
- Manufacturing testers are very expensive
 - Minimize time on tester
 - Careful selection of test vectors

Validation and Test of Manufactured Circuits

Goals of Design-for-Test (DFT)

Make testing of manufactured part swift and comprehensive

DFT Mantra


Provide controllability and observability

Components of DFT strategy

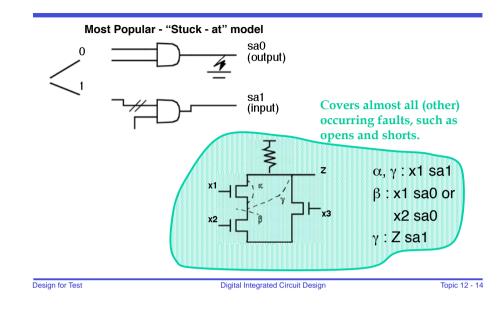
- Provide circuitry to enable test
- Provide test patterns that guarantee reasonable coverage

Test Classification

Design for Testability

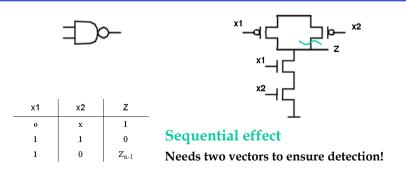
Design for Test

- Design the chip to increase observability and controllability
- If each register could be observed and controlled, test problem reduces to testing combinational logic between registers.
- Better yet, logic blocks could enter test mode where they generate test patterns and report the results automatically.

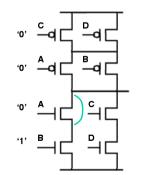

Controllability/Observability

- Combinational Circuits: controllable and observable - relatively easy to determine test patterns
- Sequential Circuits: State! Turn into combinational circuits or use self-test
- Memory: requires complex patterns Use self-test

Generating and Validating Test-Vectors


Fault Models

- Automatic test-pattern generation (ATPG)
 - for given fault, determine excitation vector (called test vector) that will propagate error to primary (observable) output
 - majority of available tools: combinational networks only
 - sequential ATPG available from academic research
- Fault simulation
 - · determines test coverage of proposed test-vector set
 - simulates correct network in parallel with faulty networks
- Both require adequate models of faults in CMOS integrated circuits

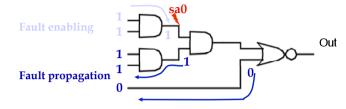

Design for Test	Digital Integrated Circuit Design	Topic 12 - 13

Problem with stuck-at model: CMOS open fault

Other options: use stuck-open or stuck-short models This requires fault-simulation and analysis at the switch or transistor level - Very expensive!

Problem with stuck-at model: CMOS short fault

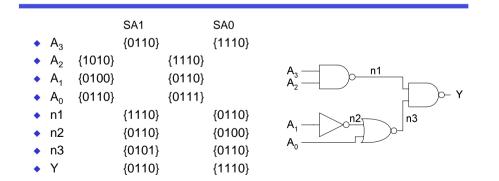
Causes short circuit between Vdd and GND for A=C=0, B=1


Possible approach: Supply Current Measurement (IDDQ) but: not applicable for gigascale integration

Test Pattern Generation

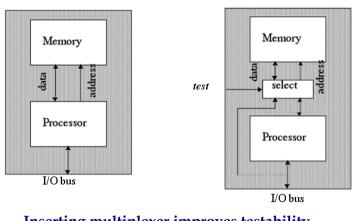
Path Sensitization

- Manufacturing test ideally would check every node in the circuit to prove it is not stuck.
- Apply the smallest sequence of test vectors necessary to prove each node is not stuck.
- Good observability and controllability reduces number of test vectors required for manufacturing test.
 - · Reduces the cost of testing
 - · Motivates design-for-test


Goals: Determine input pattern that makes a fault controllable (triggers the fault, and makes its impact visible at the output nodes)

Techniques Used: D-algorithm, Podem

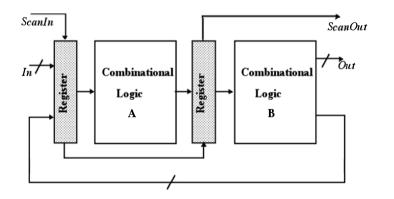
Test Example


Minimum set: {0100, 0101, 0110, 0111, 1010, 1110}

Test Approaches

- Ad-hoc testing
- Scan-based Test
- Self-Test
- Problem is getting harder
 - increasing complexity and heterogeneous combination of modules in systemon-a-chip.
 - Advanced packaging and assembly techniques extend problem to the board level

Topic 12 - 19


Ad-hoc Test

Inserting multiplexer improves testability

Design for Test	Digital Integrated Circuit Design	Topic 12 - 21
0		

Scan-based Test

• Convert each flip-flop to a scan register CLK Only costs one extra multiplexer Normal mode: flip-flops behave as usual Flop SI Q • Scan mode: flip-flops behave as shift register D Contents of flops can be scanned out and new values scanned in Logic Cloud Logic Cloud

Scan

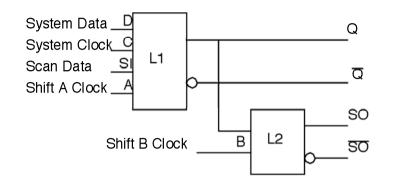

Design for Test

Digital Integrated Circuit Design

Topic 12 - 22

outouts

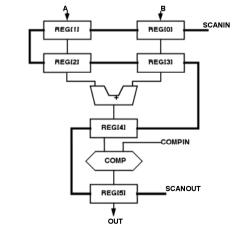
Scannable Flip-flops



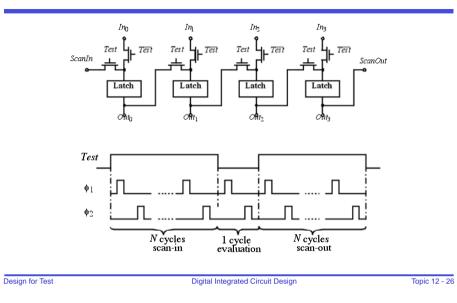
Topic 12 - 23

Design for Test

Design for Test


Polarity-Hold SRL (Shift-Register Latch)

Introduced at IBM and set as company policy


Design for Test	Digital Integrated Circuit Design	Topic 12 - 25

Scan-Path Testing

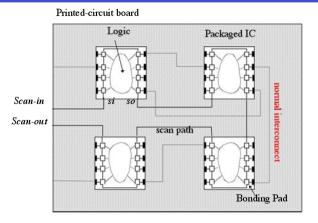
Partial-Scan can be more effective for pipelined datapaths

Scan-based Test—Operation

Boundary Scan

- Testing boards is also difficult
 - Need to verify solder joints are good
 - Drive a pin to 0, then to 1
 - ➤ Check that all connected pins get the values
- Through-hold boards used "bed of nails"
- SMT and BGA boards cannot easily contact pins
- Build capability of observing and controlling pins into each chip to make board test easier

Boundary Scan (JTAG)


Boundary Scan Example

CHIP C

Serial Data Out

CHIP D

Package Interconnect

Board testing becomes as problematic as chip testing

Design for Test	Digital Integrated Circuit Design	Topic 12 - 29	Design for Test	Digital Integrated Circuit Design	Topic 12 - 30

Boundary Scan Interface

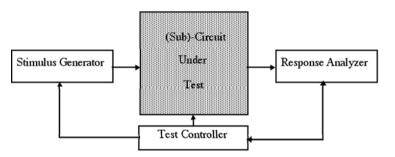
- Boundary scan is accessed through five pins
 - TCK: test clock
 - TMS: test mode select
 - TDI: test data in
 - TDO: test data out
 - TRST*: test reset (optional)
- Chips with internal scan chains can access the chains through boundary scan for unified test strategy.

Built-in Self-test

- Built-in self-test lets blocks test themselves
 - Generate pseudo-random inputs to comb. logic

Serial Data In

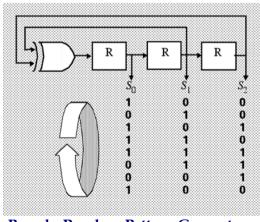
• Combine outputs into a syndrome


CHIP B

CHIP A

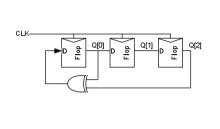
lOpad and Boundary Scar Cell

• With high probability, block is fault-free if it produces the expected syndrome


Self-test

Rapidly becoming more important with increasing chip-complexity and larger modules

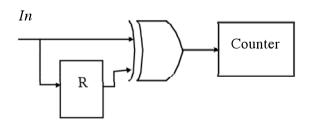
Design for Test Digital Integrated Circuit Design


Linear-Feedback Shift Register (LFSR)

Pseudo-Random Pattern Generator

PRSG

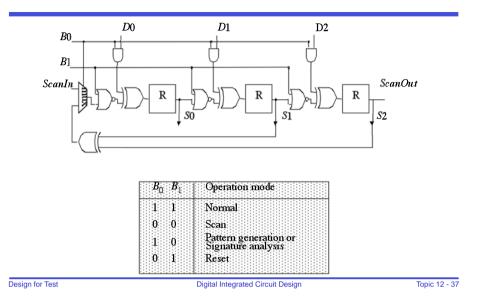
- Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

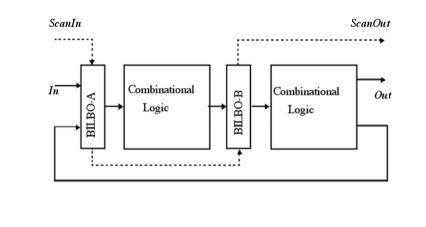

Step	Q
0	111
1	110
2	101
3	010
4	100
5	001
6	011
7	111 (repeats)

Design for Test

Digital Integrated Circuit Design

Topic 12 - 34

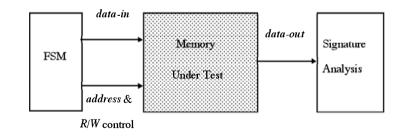

Signature Analysis


Counts transitions on single-bit stream **=** Compression in time

Topic 12 - 33

BILBO

BILBO Application


BILBO

- Built-in Logic Block Observer
 - Combine scan with PRSG & signature analysis

Memory Self-Test

Digital Integrated Circuit Design

Patterns: Writing/Reading 0s, 1s, Walking 0s, 1s Galloping 0s, 1s

Design for Test

Topic 12 - 38

Low Cost Testing

TestosterICs

- If you don't have a multimillion dollar tester:
 - Build a breadboard with LED's and switches
 - Hook up a logic analyzer and pattern generator
 - Or use a low-cost functional chip tester

- Ex: TestosterICs functional chip tester
 - Designed by clinic teams and David Diaz at HMC
 - Reads your IRSIM test vectors, applies them to your chip, and reports assertion failures

Digital Integrated Circuit Design

Topic 12 - 42

Design for Test Digital Integrated Circuit Design Topic 12 - 41
5 m 15 m 15 m 15 m 15 m 16 m 16 m 16 m 1

Summary

- Think about testing from the beginning
 - Simulate as you go
 - Plan for test after fabrication
- "If you don't test it, it won't work! (Guaranteed)"