Data Encryption Standard (DES) History, method, application and strength	 Data Encryption Standard (DES) Published 1977 NBS Original IBM design 64 bit input → 64 bit encrypted output 56 bit key with odd parity (total 64 bits) Suitable for hardware not software 56 bits no longer secure
KEY TRANSFORMS IN BLOCK CIPHERS For a k-bit block cipher - Substitution For every k-bit i/p specify a k-bit o/p This requires k.2 ^k bits - Permutation For every bit specify new position in block This requires k.log ₂ k bits	Round Structure for Block Encryption • Take 64-bit i/p • Break into 8x8-bit blocks • Perform substitution and reassemble into 64 bits • Perform permutation and repeat • After several rounds single i/p bit affects every o/p bit • Optimum number of rounds • Can be run in reverse for decryption

DES Overview (Decryption)

DES Overview (decryption)

Encryption run in reverse

i.e. Initial permutation Round 1 with k_{16} Round 2 with k_{15}

Same keys as for Encryption but in Reverse order

Round 16 with k₁

Left/right reversal

Final permutation

NB Initial and final permutations are inverses of each other and have no security value

The 16 Per Round Keys

NB Initial permutation to produce \mathbf{c}_0 and \mathbf{d}_0 is not random and has no security value

A DES Round (encryption)

A DES Round (decryption)

Encrypt/Decrypt in a DES Round

From encryption $L_{n+1} = R_n$ and

 $R_{n+1} = L_n \oplus M_{K_n}(R_n)$

Therefore

 $R_{n+1} \oplus M_{k_n}(R_n) = L_n$ and hence decryption NB Mangler function does not require an inverse

Mangler Overview

R = 32 bits = 8 x 4 bits \rightarrow 8 x 6 bits by copying last 2 bits in every 4

Take 48 bit key k and add mod 2 to expanded 48 bit R

Result is 48 bits = 8 x 6 bits

Compress each 6 bits to 4 bits through S box giving 32 bits

Permute 32 bit result

NB Importance of permutation to influence next round

International Data Encryption Algorithm

International Data Encryption Algorithm (IDEA)

- Established 1991
- 64-bit plaintext \rightarrow 64-bit ciphertext
- 128-bit key
- Round structure and Mangler similar to DES

IDEA Primitive Operations

- Two 16-bit numbers \rightarrow one 16 bit number
- Bitwise exclusive or +
- Addition + modulo 2¹⁶
- Multiplication modulo 2 ¹⁶+1
- All operations are "reversible"

IDEA Overview

IDEA Odd Round

IDEA Even Round

IDEA Decryption

- All processes the same
- Even round is its own inverse (use same keys)
- Odd rounds use inverse keys

Advanced Encryption Standard

Advanced Encryption Standard

- Uses Rijndael system
- In a pure Rijndael system block and key sizes may be chosen independently(128, 160, 192, 224 and 256 bits) but AES specifies 128-bit block size
- Number of rounds = 6 + max (block, key size expressed in 32-bit words}